Characteristics and mechanism of Cu(II) adsorption on prepared calcium alginate/carboxymethyl cellulose@MnFe2O4

Abstract

A magnetic composite microsphere, calcium alginate (CA)/carboxymethyl cellulose (CMC)@MnFe2O4, was prepared using CA and CMC encapsulated MnFe2O4 through blending and cross-linking for the removal of Cu(II) from aqueous solution. The CA/CMC@MnFe2O4 was characterized in detail by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and X-ray phosphorescence spectroscopy. In addition, various adsorption conditions including the initial pH of Cu(II) solution, equilibrium contact time, and initial Cu(II) concentration were tested. The adsorption data fit better to the Langmuir isotherm and follow the pseudo-second-order model, suggesting that it is a monolayer adsorption process with chemisorption as the rate-limiting step. The maximum adsorption capacity of the CA/CMC@MnFe2O4 was 77.22 mg g−1 at 25 ℃ and pH 5. Cu(II) removal mechanisms of CA/CMC@MnFe2O4 follow ion exchange as well as the formation of complexes as evidenced based on the microstructure analysis and adsorption data fitting.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Guan X, Yang H, Sun Y, Qiao J (2019) Enhanced immobilization of chromium(VI) in soil using sulfidated zero-valent iron. Chemosphere 228:370–376

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Lachowicz JI, Delpiano GR, Zanda D, Piludu M, Sanjust E, Monduzzi M, Salis A (2019) Adsorption of Cu2+ and Zn2+ on SBA-15 mesoporous silica functionalized with triethylenetetramine chelating agent. J Environ Chem Eng 532:474–484

    Google Scholar 

  3. 3.

    Sun J, Chen Y, Yu H, Yan L, Du B, Pei Z (2018) Removal of Cu2+, Cd2+ and Pb2+ from aqueous solutions by magnetic alginate microsphere based on Fe3O4/MgAl-layered double hydroxide. J Colloid Interface Sci 532:474–484

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Yu C, Wang M, Dong X, Shi Z, Zhang X, Lin Q (2017) Removal of Cu(II) from aqueous solution using Fe3O4–alginate modified biochar microspheres. RSC Adv 7:53135–53144

    CAS  Article  Google Scholar 

  5. 5.

    Asadi R, Abdollahi H, Gharabaghi M, Boroumand Z (2020) Effective removal of Zn(II) ions from aqueous solution by the magnetic MnFe2O4 and CoFe2O4 spinel ferrite nanoparticles with focuses on synthesis, characterization, adsorption, and desorption. Adv Powder Technol 31:1480–1489

    CAS  Article  Google Scholar 

  6. 6.

    Ren Y, Li N, Feng J, Luan T, Wen Q, Li Z, Zhang M (2012) Adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe2O4. J Colloid Interface Sci 367:415–421

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Giakisikli G, Anthemidis AN (2013) Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Anal Chim Acta 789:1–16

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Zheng XM, Dou JF, Xia M, Ding AZ (2017) Ammonium-pillared montmorillonite-CoFe2O4 composite caged in calcium alginate beads for the removal of Cs+ from wastewater. Carbohydr Polym 167:306–316

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Talbot D, Abramson S, Griffete N, Bée A (2018) pH-sensitive magnetic alginate/γ-Fe2O3 nanoparticles for adsorption/desorption of a cationic dye from water. J Water Process Eng 25:301–308

    Article  Google Scholar 

  10. 10.

    J. R, J. J, (2019) Simultaneous removal of binary dye from textile effluent using cobalt ferrite-alginate nanocomposite: Performance and mechanism. Microchem J 145:791–800

    Article  CAS  Google Scholar 

  11. 11.

    Ren H, Gao Z, Wu D, Jiang J, Sun Y, Luo C (2016) Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism. Carbohydr Polym 137:402–409

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Vijayalakshmi K, Devi BM, Latha S, Gomathi T, Sudha PN, Venkatesan J, Anil S (2017) Batch adsorption and desorption studies on the removal of lead(II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. Int J Biol Macromol 104:1483–1494

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Taleb MFA (2014) Adsorption and photocatalytic degradation of 2-CP in wastewater onto CS/CoFe2O4 nanocomposite synthesized using gamma radiation. Carbohydr Polym 114:65–72

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Hu Q, Liu Y, Gu X, Zhao Y (2017) Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles. Chemosphere 181:328–336

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Dewangan T, Tiwari A, Bajpai AK (2011) Removal of chromium(VI) ions by adsorption onto binary biopolymeric beads of sodium alginate and carboxymethyl cellulose. J Dispers Sci Technol 32:1075–1082

    CAS  Article  Google Scholar 

  16. 16.

    Wu T, Mao L, Wang H (2017) Adsorption of fluoride from aqueous solution by using hybrid adsorbent fabricated with Mg/Fe composite oxide and alginate via a facile method. J Fluorine Chem 200:8–17

    CAS  Article  Google Scholar 

  17. 17.

    Guo Y, Tang W, Wu J, Huang Z, Dai J (2014) Mechanism of Cu(II) adsorption inhibition on biochar by its aging process. J Environ Sci 26:2123–2130

    Article  Google Scholar 

  18. 18.

    Verma R, Asthana A, Singh AK, Prasad S, Susan MABH (2017) Novel glycine-functionalized magnetic nanoparticles entrapped calcium alginate beads for effective removal of lead. Microchem J 130:168–178

    CAS  Article  Google Scholar 

  19. 19.

    Li X, Qi Y, Li Y, Zhang Y, He X, Wang Y (2013) Novel magnetic beads based on sodium alginate gel crosslinked by zirconium(IV) and their effective removal for Pb2+ in aqueous solutions by using a batch and continuous systems. Bioresour Technol 142:611–619

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Xiong P, Hu C, Fan Y, Zhang W, Zhu J, Wang X (2014) Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance. J Power Sources 266:384–392

    CAS  Article  Google Scholar 

  21. 21.

    Liu Y, Fu R, Sun Y, Zhou X, Baig SA, Xu X (2016) Multifunctional nanocomposites Fe3 O4@SiO2-EDTA for Pb(II) and Cu(II) removal from aqueous solutions. Appl Surf Sci 369:267–276

    CAS  Article  Google Scholar 

  22. 22.

    Hu X, Long L, Gong T, Zhang J, Yan J, Xue Y (2020) Enhanced alginate-based microsphere with the pore-forming agent for efficient removal of Cu2+. Chemosphere 240:124860

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Jin H, Capareda S, Chang Z, Gao J, Xu Y, Zhang J (2014) Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: adsorption property and its improvement with KOH activation. Bioresour Technol 169:622–629

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Liu C, Ye J, Lin Y, Wu J, Price GW, Burton D, Wang Y (2020) Removal of cadmium(II) using water hyacinth (Eichhornia crassipes) biochar alginate beads in aqueous solutions. Environ Pollut 264:114785

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Zeng H, Yu Y, Wang F, Zhang J, Li D (2020) Arsenic(V) removal by granular adsorbents made from water treatment residuals materials and chitosan. Colloids Surf A 585:124036

    CAS  Article  Google Scholar 

  26. 26.

    Zhao LX, Liang JL, Li N, Xiao H, Chen LZ, Zhao RS (2020) Kinetic, thermodynamic and isotherm investigations of Cu2+ and Zn2+ adsorption on LiAl hydrotalcite-like compound. Sci Total Environ 716:137120

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Kameda T, Honda R, Kumagai S, Saito Y, Yoshioka T (2019) Adsorption of Cu2+ and Ni2+ by tripolyphosphate-crosslinked chitosan-modified montmorillonite. J Solid State Chem 277:143–148

    CAS  Article  Google Scholar 

  28. 28.

    Karami S, Zeynizadeh B (2019) Reduction of 4-nitrophenol by a disused adsorbent: EDA-functionalized magnetic cellulose nanocomposite after the removal of Cu2+. Carbohydr Polym 211:298–307

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Zhang Z, He S, Zhang Y, Zhang K, Wang J, Jing R, Yang X, Hu Z, Lin X, Li Y (2019) Spectroscopic investigation of Cu2+, Pb2+ and Cd2+ adsorption behaviors by chitosan-coated argillaceous limestone: Competition and mechanisms. Environ Pollut 254:112938

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Ojemaye MO, Okoh OO, Okoh AI (2017) Adsorption of Cu2+ from aqueous solution by a novel material; azomethine functionalized magnetic nanoparticles. Sep Purif Technol 183:204–215

    CAS  Article  Google Scholar 

  31. 31.

    Mokadem Z, Mekki S, Saïdi-Besbes S, Agusti G, Elaissari A, Derdour A (2017) Triazole containing magnetic core-silica shell nanoparticles for Pb2+, Cu2+ and Zn2+ removal. Arab J Chem 10:1039–1051

    CAS  Article  Google Scholar 

  32. 32.

    Hu C, Li G, Wang Y, Li F, Guo G, Hu H (2017) The effect of pH on the bonding of Cu2+ and chitosan-montmorillonite composite. Int J Biol Macromol 103:751–757

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Guo Y, Jia Z, Wang S, Su Y, Ma H, Wang L, Meng W (2019) Sandwich membranes based on PVDF-g-4VP and surface modified graphene oxide for Cu(II) adsorption. J Hazard Mater 377:17–23

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Bediako JK, Lin S, Sarkar AK, Zhao Y, Choi J-W, Song M-H, Wei W, Reddy DHK, Cho C-W, Yun Y-S (2020) Benignly-fabricated crosslinked polyethylenimine/calcium-alginate fibers as high-performance adsorbents for effective recovery of gold. J Clean Prod 252:119389

    CAS  Article  Google Scholar 

  35. 35.

    Gao X, Guo C, Hao J, Zhao Z, Long H, Li M (2020) Selective adsorption of Pd (II) by ion-imprinted porous alginate beads: experimental and density functional theory study. Int J Biol Macromol 157:401–413

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Liang HF, Wang ZC (2010) Adsorption of bovine serum albumin on functionalized silica-coated magnetic MnFe2O4 nanoparticles. Mater Chem Phys 124:964–969

    CAS  Article  Google Scholar 

  37. 37.

    Xu W, Song Y, Dai K, Sun S, Liu G, Yao J (2018) Novel ternary nanohybrids of tetraethylenepentamine and graphene oxide decorated with MnFe2O4 magnetic nanoparticles for the adsorption of Pb(II). J Hazard Mater 358:337–345

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Zhou YT, Branford-White C, Nie HL, Zhu LM (2009) Adsorption mechanism of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with alpha-ketoglutaric acid. Colloids Surf B Biointerfaces 74:244–252

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Mahdavinia GR, Mousanezhad S, Hosseinzadeh H, Darvishi F, Sabzi M (2016) Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption. Carbohydr Polym 147:379–391

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Roh H, Yu M-R, Yakkala K, Koduru JR, Yang J-K, Chang Y-Y (2015) Removal studies of Cd(II) and explosive compounds using buffalo weed biochar-alginate beads. J Ind Eng Chem 26:226–233

    CAS  Article  Google Scholar 

  41. 41.

    Huang S, Jiang S, Pang H, Wen T, Asiri AM, Alamry KA, Alsaedi A, Wang X, Wang S (2019) Dual functional nanocomposites of magnetic MnFe2O4 and fluorescent carbon dots for efficient U(VI) removal. Chem Eng J 368:941–950

    CAS  Article  Google Scholar 

  42. 42.

    Verma M, Kumar A, Singh KP, Kumar R, Kumar V, Srivastava CM, Rawat V, Rao G, Kumari S, Sharma P, Kim H (2020) Graphene oxide-manganese ferrite (GO-MnFe2O4) nanocomposite: one-pot hydrothermal synthesis and its use for adsorptive removal of Pb2+ ions from aqueous medium. J Mol Liq 315:113769

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the natural Science Foundation of Hainan Province of China (Project No. 219QN208); the Key Research and Development Project of Hainan Province of China (Project No. ZDYF 2020079), the Education Department of Hainan Province (Project No. Hnky2019-33).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Changjiang Yu or Qiang Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Li, H., Ma, H. et al. Characteristics and mechanism of Cu(II) adsorption on prepared calcium alginate/carboxymethyl cellulose@MnFe2O4. Polym. Bull. (2021). https://doi.org/10.1007/s00289-021-03555-7

Download citation

Keywords

  • Sodium alginate
  • Carboxymethyl cellulose
  • MnFe2O4
  • Cu(II)