Synthesis, characterization and application of a molecularly imprinted polymer as an adsorbent for solid-phase extraction of selected pharmaceuticals from water samples

Abstract

Most pollutant compounds exist as mixtures in the environment. In this regard, one of the 12 principles of green analytical chemistry emphasizes the need for methods that allow for analysis of multiple compounds versus those that analyze a single analyte at a time. In this work, we present a molecularly imprinted polymer (MIP) synthesized for the selective and efficient extraction of selected pharmaceuticals belonging to five different classes, namely an antiretroviral (nevirapine), an antidepressant (venlafaxine), a muscle relaxant (methocarbamol), an anticonvulsant (carbamazepine) and a cardiac stimulant (etilefrine) from surface water samples. Cavity tuning experiments using the target pharmaceuticals as a single or multi-template were conducted and the venlafaxine-imprinted polymer was successfully selected for the study based on its high selectivity toward targeted pharmaceuticals. Batch adsorption and kinetic studies showed that adsorption of the selected pharmaceuticals onto the particles of the polymer followed a Freundlich adsorption isotherm as well as a pseudo-second-order adsorption model. This indicated heterogeneity of the binding surface energies on the MIP resulting in multiple interactions through chemisorption. An analytical method for quantification of the compounds using liquid chromatography-mass spectrometry (LC–MS) was successfully developed, with detection limits ranging from 0.03 to 0.31 ng mL−1 and quantification limits in the 0.12–3.81 ng mL−1 range. The imprinted polymer was then evaluated as a selective adsorption sorbent for solid-phase extraction (SPE) of the selected pharmaceuticals in dam water samples followed by LC–MS analysis, giving recoveries ranging from 43 to 69%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37:1061–1068. https://doi.org/10.1021/es025834r

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Madikizela LM, Tavengwa NT, Chimuka L (2017) Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods. J Environ Manage 193:211–220. https://doi.org/10.1016/j.jenvman.2017.02.022

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Amdany R, Chimuka L, Cukrowska E (2014) Determination of naproxen, ibuprofen and triclosan in wastewater using the polar organic chemical integrative sampler ( POCIS ): a laboratory calibration and field application. Water SA 40:407–414

    Article  Google Scholar 

  4. 4.

    Madikizela LM, Tavengwa NT, Chimuka L (2018) Applications of molecularly imprinted polymers for solid-phase extraction of non-steroidal anti-inflammatory drugs and analgesics from environmental waters and biological samples. J Pharm Biomed Anal 147:624–633. https://doi.org/10.1016/j.jpba.2017.04.010

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Madikizela LM, Chimuka L (2016) Synthesis, adsorption and selectivity studies of a polymer imprinted with naproxen, ibuprofen and diclofenac. J Environ Chem Eng 4:4029–4037. https://doi.org/10.1016/j.jece.2016.09.012

    CAS  Article  Google Scholar 

  6. 6.

    Zunngu SS, Madikizela LM, Chimuka L, Mdluli PS (2017) Synthesis and application of a molecularly imprinted polymer in the solid-phase extraction of ketoprofen from wastewater. Comptes Rendus Chim 20:585–591. https://doi.org/10.1016/j.crci.2016.09.006

    CAS  Article  Google Scholar 

  7. 7.

    Santos JL, Aparicio I, Alonso E, Callejón M (2005) Simultaneous determination of pharmaceutically active compounds in wastewater samples by solid phase extraction and high-performance liquid chromatography with diode array and fluorescence detectors. Anal Chim Acta 550:116–122. https://doi.org/10.1016/j.aca.2005.06.064

    CAS  Article  Google Scholar 

  8. 8.

    Gwenzi W, Chaukura N (2018) Organic contaminants in African aquatic systems: current knowledge, health risks, and future research directions. Sci Total Environ 619–620:1493–1514. https://doi.org/10.1016/j.scitotenv.2017.11.121

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Lausier AM (2009) Detection of Pharmaceutical and Personal Care Products ( PPCPs ) in 3 Maine Lakes by Synchronous-Scan Fluorescence Spectroscopy ( SFS ). J US SJWP 80–91

  10. 10.

    Alvarez DA, Stackelberg PE, Petty JD et al (2005) Comparison of a novel passive sampler to standard water-column sampling for organic contaminants associated with wastewater effluents entering a New Jersey stream. Chemosphere 61:610–622. https://doi.org/10.1016/j.chemosphere.2005.03.023

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment : agents of subtle change ? Environ Health Perspect 107:907–946

    CAS  Article  Google Scholar 

  12. 12.

    Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Chemosphere Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93:2116–2123. https://doi.org/10.1016/j.chemosphere.2013.07.057

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    K’oreje KO, Vergeynst L, Ombaka D, et al (2016) Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere 149:238–244. https://doi.org/10.1016/j.chemosphere.2016.01.095

    CAS  Article  Google Scholar 

  14. 14.

    Mhaka B, Cukrowska E, Tse B, et al (2009) Selective extraction of triazine herbicides from food samples based on a combination of a liquid membrane and molecularly imprinted polymers. 1216:6796–6801. https://doi.org/https://doi.org/10.1016/j.chroma.2009.08.003

  15. 15.

    Lindholm PC, Knuutinen JS, Ahkola HSJ, Herve SH (2014) Analysis of Trace Pharmaceuticals and Related Compounds in Municipal Wastewaters by Preconcentration, Chromatography, Derivatization, and Separation Methods. BioResources 9:3688–3732. https://doi.org/https://doi.org/10.15376/biores.9.2.3688-3732

  16. 16.

    Madikizela LM, Ncube S, Chimuka L (2018) Recent Developments in Selective Materials for Solid Phase Extraction. Chromatographia 82:1171–1189. https://doi.org/10.1007/s10337-018-3644-8

    CAS  Article  Google Scholar 

  17. 17.

    Jiang M, Zhang JH, Mei SR et al (2006) Direct enrichment and high performance liquid chromatography analysis of ultra-trace Bisphenol A in water samples with narrowly dispersible Bisphenol A imprinted polymeric microspheres column. J Chromatogr A 1110:27–34. https://doi.org/10.1016/j.chroma.2006.01.051

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Garcia-Ac A, Segura PA, Viglino L et al (2009) On-line solid-phase extraction of large-volume injections coupled to liquid chromatography-tandem mass spectrometry for the quantitation and confirmation of 14 selected trace organic contaminants in drinking and surface water. J Chromatogr A 1216:8518–8527. https://doi.org/10.1016/j.chroma.2009.10.015

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Rezaee M, Assadi Y, Milani Hosseini MR et al (2006) Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A 1116:1–9. https://doi.org/10.1016/j.chroma.2006.03.007

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Wei X, Bao X, Wu J et al (2018) Typical pharmaceutical molecule removal behavior from water by positively and negatively charged composite hollow fiber nanofiltration membranes. RSC Adv 8:10396–10408. https://doi.org/10.1039/c8ra00519b

    CAS  Article  Google Scholar 

  21. 21.

    Baggiani C, Anfossi L, Giovannoli C (2007) Solid phase extraction of food contaminants using molecular imprinted polymers. Anal Chim Acta 591:29–39. https://doi.org/10.1016/j.aca.2007.01.056

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Martinez-Sena T, Armenta S, de la Guardia M, Esteve-Turrillas FA (2016) Determination of non-steroidal anti-inflammatory drugs in water and urine using selective molecular imprinted polymer extraction and liquid chromatography. J Pharm Biomed Anal 131:48–53. https://doi.org/10.1016/j.jpba.2016.08.006

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ncube S, Madikizela LM, Nindi MM, Chimuka L (2019) Solid phase extraction technique as a general field of application of molecularly imprinted polymer materials, 1st ed. Elsevier B.V

  24. 24.

    Zarejousheghani M, Schrader S, Möder M et al (2015) Ion-exchange molecularly imprinted polymer for the extraction of negatively charged acesulfame from wastewater samples. J Chromatogr A 1411:23–33. https://doi.org/10.1016/j.chroma.2015.07.107

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Chimuka L, Van PM, Billing J et al (2011) Selective extraction of triazine herbicides based on a combination of membrane assisted solvent extraction and molecularly imprinted solid phase extraction. J Chromatogr A 1218:647–653. https://doi.org/10.1016/j.chroma.2010.12.019

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Spivak DA (2005) Optimization, evaluation, and characterization of molecularly imprinted polymers. Adv Drug Deliv Rev 57:1779–1794. https://doi.org/10.1016/j.addr.2005.07.012

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Cormack PAG, Elorza AZ (2004) Molecularly imprinted polymers: Synthesis and characterisation. J Chromatogr B 804:173–182. https://doi.org/10.1016/j.jchromb.2004.02.013

    CAS  Article  Google Scholar 

  28. 28.

    Ncube S, Kunene P, Tavengwa NT et al (2017) Synthesis and characterization of a molecularly imprinted polymer for the isolation of the 16 US-EPA priority polycyclic aromatic hydrocarbons (PAHs) in solution. J Environ Manage 199:192–200. https://doi.org/10.1016/j.jenvman.2017.05.041

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Madikizela LM, Ncube S, Chimuka L (2019) Green chemistry features in molecularly imprinted polymers preparation process, 1st ed. Elsevier B.V

  30. 30.

    Andersson LI, Nicholls IA (2004) Molecularly imprinted polymers in separation science. J Chromatogr B 804:1. https://doi.org/10.1016/j.jchromb.2004.02.041

    CAS  Article  Google Scholar 

  31. 31.

    Kloskowski A, Pilarczyk M, Przyjazny A, Namieśnik J (2009) Progress in development of molecularly imprinted polymers as sorbents for sample preparation. Crit Rev Anal Chem 39:43–58. https://doi.org/10.1080/10408340802570223

    CAS  Article  Google Scholar 

  32. 32.

    Gałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC - Trends Anal Chem 50:78–84. https://doi.org/10.1016/j.trac.2013.04.010

    CAS  Article  Google Scholar 

  33. 33.

    Chen L, Wang X, Lu W et al (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211. https://doi.org/10.1039/C6CS00061D

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Miranda LFC, Domingues DS, Queiroz MEC (2016) Selective solid-phase extraction using molecularly imprinted polymers for analysis of venlafaxine, O-desmethylvenlafaxine, and N-desmethylvenlafaxine in plasma samples by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1458:46–53. https://doi.org/10.1016/j.chroma.2016.06.024

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Herrero-Hernández E, Rodríguez-Cruz MS, Pose-Juan E et al (2017) Seasonal distribution of herbicide and insecticide residues in the water resources of the vineyard region of La Rioja (Spain). Sci Total Environ 609:161–171. https://doi.org/10.1016/j.scitotenv.2017.07.113

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Wang GN, Zhang L, Song YP et al (2017) Application of molecularly imprinted polymer based matrix solid phase dispersion for determination of fluoroquinolones, tetracyclines and sulfonamides in meat. J Chromatogr B 1065–1066:104–111. https://doi.org/10.1016/j.jchromb.2017.09.034

    CAS  Article  Google Scholar 

  37. 37.

    Rimayi C, Odusanya D, Weiss JM et al (2018) Contaminants of emerging concern in the Hartbeespoort Dam catchment and the uMngeni River estuary 2016 pollution incident, South Africa. Sci Total Environ 627:1008–1017. https://doi.org/10.1016/j.scitotenv.2018.01.263

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Wood TP, Duvenage CSJ, Rohwer E (2015) The occurrence of anti-retroviral compounds used for HIV treatment in South African surface water. Environ Pollut 199:235–243. https://doi.org/10.1016/j.envpol.2015.01.030

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Wood TP, Basson AE, Duvenage C, Rohwer ER (2016) The chlorination behaviour and environmental fate of the antiretroviral drug nevirapine in South African surface water. Water Res 104:349–360. https://doi.org/10.1016/j.watres.2016.08.038

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Wooding M, Rohwer ER, Naudé Y (2017) Determination of endocrine disrupting chemicals and antiretroviral compounds in surface water: A disposable sorptive sampler with comprehensive gas chromatography–Time-of-flight mass spectrometry and large volume injection with ultra-high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1496:122–132. https://doi.org/10.1016/j.chroma.2017.03.057

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Kareuhanon W, Lee VS, Nimmanpipug P et al (2009) Synthesis of molecularly imprinted polymers for nevirapine by dummy template imprinting approach. Chromatographia 70:1531–1537. https://doi.org/10.1365/s10337-009-1385-4

    CAS  Article  Google Scholar 

  42. 42.

    Kadhirvel P, Combès A, Bordron L, Pichon V (2019) Development and application of water-compatible molecularly imprinted polymers for the selective extraction of carbamazepine from environmental waters. Anal Bioanal Chem 411:1525–1536. https://doi.org/10.1007/s00216-019-01586-8

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Wang R, Cui Y, Hu F et al (2019) Selective recognition and enrichment of carbamazepine in biological samples by magnetic imprinted polymer based on reversible addition-fragmentation chain transfer polymerization. J Chromatogr A 1591:62–70. https://doi.org/10.1016/j.chroma.2019.01.057

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Gholivand MB, Khodadadian M (2011) Rationally designed molecularly imprinted polymers for selective extraction of methocarbamol from human plasma. Talanta 85:1680–1688. https://doi.org/10.1016/j.talanta.2011.06.066

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Ahmadi F, Karamian E (2014) Computational aidedmolecular imprinted polymer design for solid phase extraction of metaproterenol from plasma and determination by voltammetry using modified carbon nanotube electrode. Iran J Pharm Res 13:417–430. https://doi.orghttps://doi.org/10.22037/ijpr.2014.1488

  46. 46.

    Madrakian T, Haryani R, Ahmadi M, Afkhami A (2015) Spectrofluorometric determination of venlafaxine in biological samples after selective extraction on the superparamagnetic surface molecularly imprinted nanoparticles. Anal Methods 7:428–435. https://doi.org/10.1039/c4ay02144d

    CAS  Article  Google Scholar 

  47. 47.

    Zha W, Zhu Z (2010) Determination of methocarbamol concentration in human plasma by high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B 878:831–835. https://doi.org/10.1016/j.jchromb.2010.01.025

    CAS  Article  Google Scholar 

  48. 48.

    Taibon J, Schmid R, Lucha S et al (2017) An LC-MS/MS based candidate reference method for the quantification of carbamazepine in human serum. Clin Chim Acta 472:35–40. https://doi.org/10.1016/j.cca.2017.07.013

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Water Research Commission (project no. K5/2551//2) and the Collaborative Postgraduate Training Researchers grant from the National Research Foundation (NRF) of South Africa (Grant 105227).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luke Chimuka.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khulu, S., Ncube, S., Kgame, T. et al. Synthesis, characterization and application of a molecularly imprinted polymer as an adsorbent for solid-phase extraction of selected pharmaceuticals from water samples. Polym. Bull. (2021). https://doi.org/10.1007/s00289-021-03553-9

Download citation

Keywords

  • Molecularly imprinted polymer
  • Pharmaceuticals
  • Nevirapine
  • Carbamazepine
  • Venlafaxine