Synthesis and characterization of poly-3-(9H-carbazol-9-yl)propylmethacrylate as a gel electrolyte for dye-sensitized solar cell applications

Abstract

Poly-3-(9H-carbazol-9-yl)propylmethacrylate (pCMA) is synthesized as a polymer gel electrolyte and employed in the fabrication of dye-sensitized solar cells (DSSC). The pCMA was characterized by various analytical techniques to examine its structural and thermal properties. The photovoltaic and electrochemical effects of this electrolyte in DSSCs were investigated. From the results, it was found that DSSCs assembled with pCMA-PGE is an efficient electrolyte, which yields an open-circuit voltage 545 mV and current density 10 mA for a cell of area 0.25 cm2. pCMA-PGE device shows better performance (η = 2.2%), and it also performs as a good host polymer matrix for redox couple in the electrolyte.

Graphic abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p–n junction photocell for converting solar radiation into electrical power. J Appl Phys 25:676–677. https://doi.org/10.1063/1.1721711

    CAS  Article  Google Scholar 

  2. 2.

    Coyle DJ, Blaydes HA, Northey RS et al (2013) Life prediction for CIGS solar modules part 2. Prog Photovolt. https://doi.org/10.1002/pip.1172

    Article  Google Scholar 

  3. 3.

    Wu J, Lan Z, Lin J et al (2015) Electrolytes in dye-sensitized solar cells. Chem Rev 115:2136–2173. https://doi.org/10.1021/cr400675m

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  5. 5.

    Mathew S, Yella A, Gao P et al (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247. https://doi.org/10.1038/nchem.1861

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Yao Z, Guo Y, Wang L et al (2019) Energy loss reduction as a strategy to improve the efficiency of dye sensitized solar cells. Sol RRL 1900253:1900253. https://doi.org/10.1002/solr.201900253

    CAS  Article  Google Scholar 

  7. 7.

    Benesperi I, Michaels H, Freitag M (2018) The researcher’s guide to solid-state dye-sensitized solar cells. J Mater Chem C 6:11903–11942. https://doi.org/10.1039/c8tc03542c

    CAS  Article  Google Scholar 

  8. 8.

    Carella A, Borbone F, Centore R (2018) Research progress on photosensitizers for DSSC. Front Chem 6:1–24. https://doi.org/10.3389/fchem.2018.00481

    CAS  Article  Google Scholar 

  9. 9.

    Hou W, Xiao Y, Han G, Lin JY (2019) The applications of polymers in solar cells: a review. Polymers (Basel) 11:1–46. https://doi.org/10.3390/polym11010143

    CAS  Article  Google Scholar 

  10. 10.

    Ileperuma OA (2013) Gel polymer electrolytes for dye sensitised solar cells: a review. Mater Technol 28:65–70. https://doi.org/10.1179/1753555712Y.0000000043

    CAS  Article  Google Scholar 

  11. 11.

    Mohan K, Bora A, Chandra B et al (2016) A highly stable and efficient quasi solid-state dye sensitized solar cell based on polymethyl methacrylate (PMMA)/ polyaniline Nanotube (PANI-NT) gel electrolyte. Electrochim Acta 222:1072–1078. https://doi.org/10.1016/j.electacta.2016.11.077

    CAS  Article  Google Scholar 

  12. 12.

    Murugadoss V, Arunachalam S, Elayappan V, Angaiah S (2018) Development of electrospun PAN/CoS nanocomposite membrane electrolyte for high-performance DSSC. Ionics (Kiel) 24:4071–4080. https://doi.org/10.1007/s11581-018-2540-4

    CAS  Article  Google Scholar 

  13. 13.

    Ma′alinia A, Asgari Moghaddam H, Nouri E, Mohammadi MR (2018) Long-term stability of dye-sensitized solar cells using a facile gel polymer electrolyte. New J Chem. 42:13256–13262

    Article  Google Scholar 

  14. 14.

    Önen T, Karakuş MÖ, Coşkun R, Çetin H (2019) Reaching stability at DSSCs with new type gel electrolytes. J Photochem Photobiol A Chem 385:112082. https://doi.org/10.1016/j.jphotochem.2019.112082

    CAS  Article  Google Scholar 

  15. 15.

    Chen T, Qiu L, Yang Z et al (2012) An integrated “energy wire” for both photoelectric conversion and energy storage. Angew Chem Int Ed 51:11977–11980. https://doi.org/10.1002/anie.201207023

    CAS  Article  Google Scholar 

  16. 16.

    Dubal DP, Chodankar NR, Kim DH, Gomez-Romero P (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129. https://doi.org/10.1039/c7cs00505a

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Cheng X, Pan J, Zhao Y et al (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8:1–16. https://doi.org/10.1002/aenm.201702184

    CAS  Article  Google Scholar 

  18. 18.

    Cao F, Oskam G (1995) A solid state, dye sensitized photoelectrochemical cell. J Phys Chem. 99:17071–17073

    CAS  Article  Google Scholar 

  19. 19.

    Chen CL, Chang TW, Teng H et al (2013) Highly efficient gel-state dye-sensitized solar cells prepared using poly(acrylonitrile-co-vinyl acetate) based polymer electrolytes. Phys Chem Chem Phys 15:3640–3645. https://doi.org/10.1039/c3cp50170a

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Gnana kumar G, Balanay MP, Nirmala R, et al (2015) The photovoltaic performances of PVdF-HFP electrospun membranes employed quasi-solid-state dye sensitized solar cells. J Nanosci Nanotechnol 16:581–587. https://doi.org/10.1166/jnn.2016.10677

    CAS  Article  Google Scholar 

  21. 21.

    Xu T, Li J, Gong R et al (2018) Environmental effects on the ionic conductivity of poly(methyl methacrylate) (PMMA)-based quasi-solid-state electrolyte. Ionics (Kiel) 24:2621–2629. https://doi.org/10.1007/s11581-017-2397-y

    CAS  Article  Google Scholar 

  22. 22.

    Wu J, Lan Z, Lin J et al (2007) Influence of solvent on the poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and the performance of quasi-solid-state dye-sensitized solar cells. Electrochim Acta. 52(14):7128–7135. https://doi.org/10.1016/j.electacta.2007.05.055

    CAS  Article  Google Scholar 

  23. 23.

    Miettunen K, Vapaavuori J, Poskela A et al (2018) Recent progress in flexible dye solar cells. Wiley Interdiscip Rev Energy Environ 7:1–11. https://doi.org/10.1002/wene.302

    CAS  Article  Google Scholar 

  24. 24.

    Pavithra N, Asiri AM, Anandan S (2015) Fabrication of dye sensitized solar cell using gel polymer electrolytes consisting poly(ethylene oxide)-acetamide composite. J Power Sources 286:346–353. https://doi.org/10.1016/j.jpowsour.2015.03.160

    CAS  Article  Google Scholar 

  25. 25.

    Jovanovski V, Orel B, Ješe R et al (2005) Novel polysilsesquioxane – I/I3 ionic electrolyte for dye-sensitized photoelectrochemical cells. J Phys Chem B 109:14387–14395. https://doi.org/10.1021/jp051270c

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Anandan S, Pavithra N (2016) Silicotungustic acid incorporated gel polymer electrolyte as efficient redox mediator for dye sensitized solar cells. Synth Met 219:93–100. https://doi.org/10.1016/j.synthmet.2016.05.014

    CAS  Article  Google Scholar 

  27. 27.

    Wang Z, Wang L, Zhang Y et al (2017) Dye-sensitized solar cells based on cobalt-containing room temperature ionic liquid redox shuttles. RSC Adv 7:13689–13695. https://doi.org/10.1039/c6ra26402f

    CAS  Article  Google Scholar 

  28. 28.

    Dong RX, Shen SY, Chen HW et al (2013) A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells. J Mater Chem A 1:8471–8478. https://doi.org/10.1039/C3TA11331K

    CAS  Article  Google Scholar 

  29. 29.

    Watanabe M, Ogata N (1987) In: MacCallum JR, Vincent CA (eds) Polymer electrolyte reviews-1. Elsevier, London. https://doi.org/10.1002/pi.4980200325

  30. 30.

    Appetecchi GB, Croce F, Ronci F, Scrosati B, Alessandrini F, Carewska M, Prosini PP (1999) Electrochemical characterization of a composite polymer electrolyte with improved lithium metal electrode interfacial properties. Ionics 5:59–63. https://doi.org/10.1007/BF02375904

    CAS  Article  Google Scholar 

  31. 31.

    Song JY, Wang YY, Wan CC (2000) Conductivity study of porous plasticized polymer electrolyte based on poly(vinylidene fluoride) a comparison with polypropylene separators. J Electrochem Soc 147(9):3219–3225. https://doi.org/10.1149/1.1393886

    CAS  Article  Google Scholar 

  32. 32.

    Xia K, Peng Z, Hu Z et al (2015) High efficiency quasi-solid state dye-sensitized solar cells based on a novel mixed-plasticizer modified polymer electrolyte. Electrochim Acta 153:28–32. https://doi.org/10.1016/j.electacta.2014.11.174

    CAS  Article  Google Scholar 

  33. 33.

    Wang Q, Moser JE, Grätzel M (2005) Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B 109:14945–14953. https://doi.org/10.1021/jp052768h

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Kumar EN, Jose R, Archana PS et al (2012) High performance dye-sensitized solar cells with record open circuit voltage using tin oxide nanoflowers developed by electrospinning. Energy Environ Sci 5:5401–5407. https://doi.org/10.1039/c1ee02703d

    CAS  Article  Google Scholar 

  35. 35.

    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications (2nd edn). Wiley-Interscience, New York

Download references

Acknowledgements

This research was financially supported by the Department of Science and Technology in India under the Solar Energy Research Initiative scheme (DST/TMD/SERI/S32). The author (Najat Marraiki) extends their appreciation to The Researchers Supporting Project Number (RSP-2020/201) King Saud University, Saudi Arabia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sambandam Anandan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdul Azeez, U.H., Gunasekaran, A., Sorrentino, A. et al. Synthesis and characterization of poly-3-(9H-carbazol-9-yl)propylmethacrylate as a gel electrolyte for dye-sensitized solar cell applications. Polym. Bull. (2021). https://doi.org/10.1007/s00289-021-03541-z

Download citation

Keywords

  • Poly-carbazole methylmethacrylate
  • Gel electrolyte
  • Dye-sensitized solar cells
  • Photovoltaics
  • Efficiency