Investigation on improving properties of polypropylene-based nanocomposites by employing Algerian nanoclay

Abstract

A study was conducted to evaluate the influence of nanoclay on the final properties of polypropylene-based nanocomposites. Polypropylene/nanoclay nanocomposites with a varied content of nanoclayranging from 0 wt% to 11 wt% were prepared using a co-rotating twin screw extruder. The polypropylene-grafted maleic anhydride (PP-g-MA) was used as a compatibilizer to improve the dispersibility of the nanoclay. Properties and characteristics of nanoclay and PP/PP-g-MA/nanoclay nanocomposites were investigated by means of laser diffraction spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffractometer, ZWICK/ROELL testing machine, capillary rheometer, thermogravimetry/differential scanning calorimetry and scanning electron microscopy. The results of morphological characterization indicated that the dispersion and the distribution of the charges are the essential characteristics likely to influence the mechanical, rheological, thermal and morphological properties of the nanocomposites. Thus, the results manifested that the incorporation of a small amount of nanoclay had a significant effect on the final properties of nanocomposites.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Kumar M, Shanmuga Priya N, Kanagaraj S, Pugazhenthi G (2016) Melt rheological behavior of PMMA nanocomposites reinforced with modified nanoclay. Nanocomposites 2:109–116

    CAS  Article  Google Scholar 

  2. 2.

    Wang N, Gao N, Fang Q, Chen E (2011) Compatibilizing effect of mesoporous fillers on the mechanical properties and morphology of polypropylene and polystyrene blend. Mater Des 32:1222–1228

    CAS  Article  Google Scholar 

  3. 3.

    Rogalski JJ, Bastiaansen CW, Peijs T (2017) Rotary jet spinning review–a potential high yield future for polymer nanofibers. Nanocomposites 3:97–121

    Article  Google Scholar 

  4. 4.

    Xu B, Simonsen J, Rochefort WE (2000) Mechanical properties and creep resistance in polystyrene/polyethylene blends. J Appl Polym Sci 76:1100–1108

    CAS  Article  Google Scholar 

  5. 5.

    Gurses A (2015) Introduction to polymer–clay nanocomposites. CRC Press, Boca Raton

    Google Scholar 

  6. 6.

    Nafchi HR, Abdouss M, Najafi SK, Gargari RM, Mazhar M (2015) Effects of nano-clay particles and oxidized polypropylene polymers on improvement of the thermal properties of wood plastic composite. Maderas Ciencia y tecnología 17:45–54

    CAS  Google Scholar 

  7. 7.

    Lvov Y, Guo B, Fakhrullin RF (eds) (2016) Functional polymer composites with nanoclays, vol 22. Royal Society of Chemistry

  8. 8.

    Reddy B (2011) Advances in nanocomposites: synthesis, characterization and industrial applications. InTech

  9. 9.

    Bahrami SH, Mirzaie Z (2011) Polypropylene/modified nanoclay composite-processing and dyeability properties. World Appl Sci J 13:493–501

    CAS  Google Scholar 

  10. 10.

    Morfologi S, dan Mekanik T (2013) Glass fiber and nanoclay reinforced polypropylene composites: morphological, thermal and mechanical properties. Sains Malaysiana 42:537–546

    Google Scholar 

  11. 11.

    Karger-Kocsis J (ed) (2012) Polypropylene structure, blends and composites: volume 3 composites. Springer Science & Business Media, Berlin

    Google Scholar 

  12. 12.

    Tri PN, Guinault A, Sollogoub C (2012) Élaboration et propriétés des composites polypropylène recyclé/fibres de bambou. Matériaux & Techniques 100:413–423

    CAS  Article  Google Scholar 

  13. 13.

    Vishvanathperumal S, Gopalakannan S (2019) Effects of the nanoclay and crosslinking systems on the mechanical properties of ethylene-propylene-diene monomer/styrene butadiene rubber blends nanocomposite. Silicon 11:117–135

    CAS  Article  Google Scholar 

  14. 14.

    Zdiri K, Elamri A, Hamdaoui M, Harzallah O, Khenoussi N, Brendlé J (2018) Elaboration and characterization of recycled PP/clay nanocomposites, vol 9, pp 2370–2378

  15. 15.

    Van der Marel HW, Beutelspacher H (1976) Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier, Amsterdam

    Google Scholar 

  16. 16.

    Boulingui JE, Nkoumbou C, Njoya D, Thomas F, Yvon J (2015) Characterization of clays from Mezafe and Mengono (Ne-Libreville, Gabon) for potential uses in fired products. Appl Clay Sci 115:132–144

    CAS  Article  Google Scholar 

  17. 17.

    Davis JA (1990) Surface complexation modeling in aqueous geochemistry. Miner-Water Interface Geochem 23:177–259

    Article  Google Scholar 

  18. 18.

    Osabor VN, Duke OEE, Edem CA (2016) Thermal decomposition studies of clays from odukpani, south-south nigeria by differential thermal and thermogravimetric analytical techniques. Int J Sci Eng Res 7:6–15

    Google Scholar 

  19. 19.

    Laske S (2015) Polymer nanoclay composites, 1st edn. William Andrew, Norwich

    Google Scholar 

  20. 20.

    Moja TN, Bunekar N, Mishra SB, Tsai TY, Hwang SS, Mishra AK (2020) Melt processing of polypropylene-grafted-maleic anhydride/Chitosan polymer blend functionalized with montmorillonite for the removal of lead ions from aqueous solutions. Sci Rep 10:1–14

    Article  Google Scholar 

  21. 21.

    Chabert E, Bornert M, Bourgeat-Lami E, Cavaillé JY, Dendievel R, Gauthier C et al (2004) Filler–filler interactions and viscoelastic behavior of polymer nanocomposites. Mater Sci Eng A 381:320–330

    Article  Google Scholar 

  22. 22.

    Ferreira FV, Francisco W, Menezes BR, Brito FS, Coutinho AS, Cividanes LS et al (2016) Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites. Appl Surf Sci 389:921–929

    CAS  Article  Google Scholar 

  23. 23.

    Yang K, Endoh M, Trojanowski R, Ramasamy RP, Gentleman MM, Butcher TA, Rafailovich MH (2015) The thermo-mechanical response of PP nanocomposites at high graphene loading. Nanocomposites 1:126–137

    CAS  Article  Google Scholar 

  24. 24.

    Gonzalez I, Eguiazabal JI, Nazabal J (2006) Nanocomposites based on a polyamide 6/maleated styrene-butylene-co-ethylene-styrene blend: effects of clay loading on morphology and mechanical properties. Eur Polymer J 42:2905–2913

    CAS  Article  Google Scholar 

  25. 25.

    Kelnar I, Kotek J, Kapralkova L, Munteanu BS (2005) Polyamide nanocomposites with improved toughness. J Appl Polym Sci 96:288–293

    CAS  Article  Google Scholar 

  26. 26.

    Kouini B, Serier A (2016) Studying the effect of nanoclays on the mechanical properties of polypropylene/polyamide nanocomposites. World Acad Sci Eng Technol Int J Chem Mol Nucl Mater Metall Eng 10:331–334

    Google Scholar 

  27. 27.

    Rasana N, Jayanarayanan K (2018) Polypropylene/short glass fiber/nanosilica hybrid composites: evaluation of morphology, mechanical, thermal, and transport properties. Polymer Bull 75:2587–2605

    CAS  Article  Google Scholar 

  28. 28.

    Oya A, Kurokawa Y, Yasuda H (2000) Factors controlling mechanical properties of clay mineral/polypropylene nanocomposites. J Mater Sci 35:1045–1050

    CAS  Article  Google Scholar 

  29. 29.

    Eiras D, Pessan LA (2009) Mechanical properties of polypropylene/calcium carbonate nanocomposites. Mater Res 12:517–522

    CAS  Article  Google Scholar 

  30. 30.

    Ray SS (2013) Clay-containing polymer nanocomposites: from fundamentals to real applications. Elsevier Newnes, London

    Google Scholar 

  31. 31.

    Galgali G, Agarwal S, Lele A (2004) Effect of clay orientation on the tensile modulus of polypropylene–nanoclay composites. Polymer 45:6059–6069

    CAS  Article  Google Scholar 

  32. 32.

    Bertini F, Canetti M, Audisio G, Costa G, Falqui L (2006) Characterization and thermal degradation of polypropylene–montmorillonite nanocomposites. Polym Degrad Stab 91:600–605

    CAS  Article  Google Scholar 

  33. 33.

    Awad WH, Beyer G, Benderly D, Ijdo WL, Songtipya P, del Mar Jimenez-Gasco M et al (2009) Material properties of nanoclay PVC composites. Polymer 50:1857–1867

    CAS  Article  Google Scholar 

  34. 34.

    Dikobe DG, Luyt AS (2010) Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites. Express Polym Lett 4:729–741

    CAS  Article  Google Scholar 

  35. 35.

    Leszczynska A, Pielichowski K (2008) Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposites. J Therm Anal Calorim 93:677–687

    CAS  Article  Google Scholar 

  36. 36.

    Ashenai Ghasemi F, Ghorbani A, Ghasemi I (2017) Mechanical, thermal and dynamic mechanical properties of PP/GF/xGnP nanocomposites. Mech Compos Mater 53:187–198

    Article  Google Scholar 

  37. 37.

    Myskova MZ, Zelenka J, Spacek V, Socha F (2003) Properties of epoxy systems with clay nanocomposites. Mech Compos Mater 39:119–122

    Article  Google Scholar 

  38. 38.

    Basara C, Yilmazer U, Bayram G (2005) Synthesis and characterization of epoxy based nanocomposites. J Appl Polym Sci 98:1081–1086

    CAS  Article  Google Scholar 

  39. 39.

    Rad AS, Ebrahimi D (2017) Improving the mechanical performance and thermal stability of a PVA-clay nanocomposite by electron beam irradiation. Mech Compos Mater 53:373–380

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted with the support of University of M’Hamed Bougara. M.T. expresses her profound gratitude to Prof. Benmounah Abdelbaki for the guidance, encouragement and advice. M.T. would also like to thank Dr. Zenati Athmenfor sharing his knowledge and expertise in polymer characterization. M.T. sincerely thank all members of the Advanced Polymer Materials Laboratory team at the University of Bejaia for their collaboration.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mounia Triaki.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Triaki, M., Benmounah, A. & Zenati, A. Investigation on improving properties of polypropylene-based nanocomposites by employing Algerian nanoclay. Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03265-6

Download citation

Keywords

  • Nanocomposites
  • Polypropylene
  • Nanoclay
  • Mechanical properties
  • Rheology