Effect of entanglement upon branching on dispersibility, β-nucleating and mechanically strengthening ability of polystyrene in isotactic polypropylene


Polymers with benzene rings have the potential to act as macromolecular β-nucleating agents and rigid organic particles for isotactic polypropylene (iPP). The dispersibility in iPP matrix is a key factor for their β-nucleating efficiency and mechanically strengthening ability. In this paper, comb-like branched polystyrenes (cPSs) with different side chain lengths were introduced into iPP. The effect of entanglement upon branching on dispersibility, β-nucleating and mechanically strengthening ability of PS in iPP was investigated in detail. Compared with the linear polystyrene with the same length of backbone, the incorporation of side chains intensifies the entanglement between cPS chains, not facilitating their dispersion in iPP matrix. However, short side chains (chain length lower than the critical chain entanglement molecular weight of PS) facilitate the interdiffusion between the cPS and iPP chains and ultimately lead to favorable dispersibility and high β-nucleating efficiency, as well as prominent toughening and reinforcing effect on iPP.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Li Z, Shi YJ, Sun CX, Zhang Q, Fu Q (2015) In situ micro and nano fibrillar reinforced elastomer composites based on polypropylene (PP)/olefinic block copolymer (OBC). Compos Sci Technol 115:34–42

    CAS  Article  Google Scholar 

  2. 2.

    Chen C, Zhang Z, Ding Q, Wang C, Mai K (2015) Influence of different β-nucleating agent on crystallization behavior, morphology, and melting characteristic of multiwalled carbon nanotube-filled isotactic polypropylene nanocomposites. Polym Compos 36:635–643

    CAS  Article  Google Scholar 

  3. 3.

    Papageorgiou DG, Chrissafis K, Bikiaris DN (2015) β-Nucleated polypropylene: processing, properties and nanocomposites. Polym Rev 55:596–629

    CAS  Article  Google Scholar 

  4. 4.

    Stocker W, Schumacher M, Graff S, Thierry A, Wittmann JC, Lotz B (1998) Epitaxial crystallization and AFM investigation of a frustrated polymer structure: isotactic poly (propylene), β phase. Macromolecules 31:807–814

    CAS  Article  Google Scholar 

  5. 5.

    Yue Y, Hu D, Zhang Q, Lin J, Feng J (2018) The effect of structure evolution upon heat treatment on the beta-nucleating ability of calcium pimelate in isotactic polypropylene. Polymer 149:55–64

    CAS  Article  Google Scholar 

  6. 6.

    Varga J, Menyhard A (2007) Effect of solubility and nucleating duality of N, N'-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 40:2422–2431

    CAS  Article  Google Scholar 

  7. 7.

    Su ZQ, Dong M, Guo ZX, Yu J (2007) Study of polystyrene and acrylonitrile-styrene copolymer as special β-nucleating agents to induce the crystallization of isotactic polypropylene. Macromolecules 40:4217–4224

    CAS  Article  Google Scholar 

  8. 8.

    Liu JR, Li C, Hu FM (2018) Effect of polystyrenes with different architectures on the β-nucleating efficiency and toughening of isotactic polypropylene. Polym Int 67:506–514

    CAS  Article  Google Scholar 

  9. 9.

    Phillips A, Zhu PW, Edward G (2010) Polystyrene as a versatile nucleating agent for polypropylene. Polymer 51:1599–1607

    CAS  Article  Google Scholar 

  10. 10.

    Su ZQ, Chen XN, Yu ZZ, Zhang L (2009) Morphological distribution of polymeric nucleating agents in injection-molded isotactic polypropylene plates and its influence on nucleating efficiency. J Appl Polym Sci 111:786–793

    CAS  Article  Google Scholar 

  11. 11.

    Shu Q, Zou X, Dai W, Fu Z (2012) Formation of β-iPP in isotactic polypropylene/acrylonitrile-butadiene-styrene blends: effect of resin type, phase composition, and thermal condition. J Macromol Sci Part B 51:756–766

    CAS  Article  Google Scholar 

  12. 12.

    Liu JR, Zhu XX (2019) Isotactic polypropylene toughened with poly(acrylonitrile-butadiene-styrene): compatibilizing role of maleic anhydride grafted polypropylene. Polym Eng Sci 52:E317–326

    Google Scholar 

  13. 13.

    Yang R, Ding L, Chen WL, Chen L, Zhang X, Li JC (2017) Chain folding in main-chain liquid crystalline polyester with strong π–π interaction: an efficient β-nucleating agent for isotactic polypropylene. Macromolecules 50:1610–1617

    CAS  Article  Google Scholar 

  14. 14.

    Zhang Z, Chen C, Wang C, Zhang J, Mai K (2010) A novel highly efficient β-nucleating agent for polypropylene using nano-CaCO3 as a support. Polym Int 59:1199–1204

    CAS  Article  Google Scholar 

  15. 15.

    Yi QF, Wen XJ, Dong JY, Han CC (2008) A novel effective way of comprising a β-nucleating agent in isotactic polypropylene (i-PP): polymerized dispersion and polymer characterization. Polymer 49:5053–5063

    CAS  Article  Google Scholar 

  16. 16.

    Wang N, Niu H, Li Y (2017) A novel catalytic way of comprising a β-nucleating agent in isotactic polypropylene: catalyst design strategy and polymerization-assisted dispersion. Polymer 113:259–266

    CAS  Article  Google Scholar 

  17. 17.

    Niu H, Wang N, Li Y (2018) Influence of β-nucleating agent dispersion on the crystallization behavior of isotactic polypropylene. Polymer 150:371–379

    CAS  Article  Google Scholar 

  18. 18.

    Zhao S, Qin W, Xin Z, Zhou S, Gong H, Ni Y, Zhang K (2018) In situ generation of a self-dispersed β-nucleating agent with increased nucleation efficiency in isotactic polypropylene. Polymer 151:84–91

    CAS  Article  Google Scholar 

  19. 19.

    Qin W, Xin Z, Pan C, Sun S, Jiang X, Zhao S (2019) In situ formation of zinc phthalate as a highly dispersed β-nucleating agent for mechanically strengthened isotactic polypropylene. Chem Eng J 358:1243–1252

    CAS  Article  Google Scholar 

  20. 20.

    Liu JR, Liu YX (2017) Chain entanglement and relaxation behavior of three-arm star-shaped polystyrene. Polym Mater Sci Eng 33:65–69

    CAS  Article  Google Scholar 

  21. 21.

    Liu JR, Liu YX (2018) Relaxation behavior of motion units for comb-like branched polystyrene. Polym Mater Sci Eng 34:45–49

    CAS  Google Scholar 

  22. 22.

    Namba SI, Tsukahara Y, Kaeriyama K, Okamoto K, Takahashi M (2000) Bulk properties of multibranched polystyrenes from polystyrene macromonomers: rheological behavior I. Polymer 41:5165–5171

    CAS  Article  Google Scholar 

  23. 23.

    Inkson NJ, Graham RS, McLeish TCB, Groves DJ, Fernyhough CM (2006) Viscoelasticity of monodisperse comb polymer melts. Macromolecules 39:4217–4227

    CAS  Article  Google Scholar 

  24. 24.

    Vosloo JJ, van Zyl AJ, Nicholson TM, Sanderson RD, Gilbert RG (2007) Thermal and viscoelastic structure-property relationships of model comb-like poly (n-butyl methacrylate). Polymer 48:205–219

    CAS  Article  Google Scholar 

  25. 25.

    Kirkwood KM, Leal LG, Vlassopoulos D, Driva P, Hadjichristidis N (2009) Stress relaxation of comb polymers with short branches. Macromolecules 42:9592–9608

    CAS  Article  Google Scholar 

  26. 26.

    Vega J, Aguilar M, Peón J, Pastor D, Martínez-Salazar J (2013) Effect of long chain branching on linear-viscoelastic melt properties of polyolefins. e-Polymers 2:624–658

    Google Scholar 

  27. 27.

    Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems. Part 4.-Rheological properties. J Chem Soc Faraday 2 Trans Mol Chem Phys 75:38–54

    CAS  Google Scholar 

  28. 28.

    Varga J (2002) β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B 41:1121–1171

    Article  Google Scholar 

  29. 29.

    Jones AT, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Die Makromol Chem 75:134–158

    Article  Google Scholar 

Download references


This work was financially supported by the project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information



Corresponding author

Correspondence to Jingru Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhu, T. Effect of entanglement upon branching on dispersibility, β-nucleating and mechanically strengthening ability of polystyrene in isotactic polypropylene. Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03259-4

Download citation


  • Isotactic polypropylene (iPP)
  • Polystyrene (PS)
  • Comb-like branched
  • Entanglement
  • Dispersibility
  • β-Nucleating efficiency