Optoelectronically suitable graphene oxide-decorated titanium oxide/polyaniline hybrid nanocomposites and their enhanced photocatalytic activity with methylene blue and rhodamine B dye


Organic–inorganic photocatalytic hybrid nanocomposites based on titanium oxide nanoparticle and polyaniline decorated with graphene oxide were synthesized via in situ chemical oxidative method using ammonium persulphate as an initiator and different weight percentages of TiO2 nanoparticles. The materials were characterized by using conventional techniques like UV–vis spectroscopy, FT-IR spectroscopy and X-ray diffraction. The electrical conductivity of the nanocomposites was found in the range of semiconducting materials. The nanocomposites possess broad application prospects covering the field of semiconducting devices, solar cells, sensors, microwave-absorbing materials and so on. The nanocomposites also exhibit promising photocatalytic activity towards degradation of methylene blue (MB) and rhodamine B dye in the presence of UV-light radiation. Compared to pure PANI and TiO2 nanoparticles, the GO/PANI/TiO2 nanocomposite showed much improvement in degradation efficiency. Significant photodegradation was observed with the molecules where 98.9% degradation was noted with 20% of TiO2 nanoparticles within 1 h under short-wavelength UV-light.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Kim SP, Choi HC (2014) Photocatalytic degradation of methylene blue in presence of graphene oxide/TiO2 Nanocomposites. Bull Korean Chem Soc 35:2660

    CAS  Google Scholar 

  2. 2.

    Moghaddam HM, Nasirian S (2014) Hydrogen gas sensing feature of polyaniline/titania (rutile) nanocomposite at environmental conditions. Appl Surf Sci 317:117

    Google Scholar 

  3. 3.

    Huang H, Gan M, Li M, Yu L, Hu H, Yang F, Li Y, Ge C (2015) Fabrication of polyaniline/graphen oxide/ titania nanotube arrays nanocomposites and their application in supercapacitors. J Alloys Compounds 630:214

    CAS  Google Scholar 

  4. 4.

    Hiragond CB, Kshirsagar AS, Khanna DP, More PV, Khanna PK (2018) Electro-photocatalytic degradation of methylene blue dye using various nanoparticles: a demonstration for undergraduates. J Nanomed Res 7:254

    Google Scholar 

  5. 5.

    Kampouri S, Nguyen TN, Spodaryk M, Palgrave RG, Züttel A, Smit B, Stylianou KC (2018) Dual‐functional photocatalysis: concurrent photocatalytic hydrogen generation and dye degradation using MIL‐125‐NH2 under visible light irradiation. Adv Funct Mater 28:1

    Google Scholar 

  6. 6.

    Patil MR, Shrivastava VS (2014) Photocatalytic degradation of carcinogenic methylene blue dye by using polyaniline-nickel ferrite nano-composite. Der Chemica Sinica 5:8

    Google Scholar 

  7. 7.

    Zapol P, Curtiss LA (2007) Organic molecule adsorption on TiO2 nanoparticles: a review of computational studies of surface interactions. J Comput Theo Nanosci 4:222

    CAS  Google Scholar 

  8. 8.

    Saravanan R, Shankar H, Rajasudha G, Stephen A, Narayanan V (2011) Photocatalytic degradation of organic dye using nano ZnO. Int J Nanosci 10:253

    CAS  Google Scholar 

  9. 9.

    Khattar HK, Jouda AM, Alsaady F (2018) Preparation of Cu2O nanoparticles as a catalyst in photocatalyst activity using a simple electrodeposition route. Nano Biomed Eng 10:406

    CAS  Google Scholar 

  10. 10.

    Saravanakumar K, Muthuraj V, Vadive S (2016) Constructing novel Ag nanoparticles anchored on MnO2 nanowires as an efficient visible light driven photocatalyst. RSC Adv 6:61357

    CAS  Google Scholar 

  11. 11.

    Liu X, Chen K, Shim JJ, Huang J (2015) Facile synthesis of porous Fe2O3 nanorods and their photocatalytic properties. J Saudi Chem Soc 19:479

    Google Scholar 

  12. 12.

    Dong P, Hou G, Xi X, Shao R, Dong F (2017) WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ Sci Nano 4:539

    CAS  Google Scholar 

  13. 13.

    Pouretedal HR, Kadkhodaie A (2010) Synthetic CeO2 nanoparticle catalysis of methylene blue photodegradation: kinetics and mechanism. Chinese J Catal 31:1328

    CAS  Google Scholar 

  14. 14.

    Bagal IV, Chodankar NR, Hassan MA, Waseem A, Johar MA, Kim DH, Ryu SW (2019) Cu2O as an emerging photocathode for solar water splitting—a status review. Int J Hydrogen Energ 44:21351

    CAS  Google Scholar 

  15. 15.

    Roose B, Pathak S, Steiner U (2015) Doping of TiO2 for sensitized solar cells. Chem Soc Rev 44:8326

    CAS  PubMed  Google Scholar 

  16. 16.

    Wen W, Wu JM, Jiang YZ, Bai JQ, Lai LL (2016) Titanium dioxide nanotrees for high-capacity lithium-ion microbatteries. J Mater Chem A 4:10593

    CAS  Google Scholar 

  17. 17.

    Bai J, Zhou B (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114:10131

    CAS  PubMed  Google Scholar 

  18. 18.

    Stucchi M, Bianchi CL, Pirola C, Vitali S, Cerrato G, Morandi S, Argirusis C, Sourkouni G, Sakkas PM, Capucci V (2015) Surface decoration of commercial micro-sized TiO2 by means of high energy ultrasound: a way to enhance its photocatalytic activity under visible light. Appl Catal B Environ 178:124

    CAS  Google Scholar 

  19. 19.

    Li C, Wang J, Guo H (2015) Low temperature synthesis of polyaniline crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity. J Colloid Interface Sci 458:1

    CAS  PubMed  Google Scholar 

  20. 20.

    Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39:2354

    CAS  PubMed  Google Scholar 

  21. 21.

    Lin Y, Li D, Hu J, Xiao G, Wang J, Li W, Fu X (2012) Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite. J Phys Chem C 116:5764

    CAS  Google Scholar 

  22. 22.

    Dimitrijevic NM, Tepavcevic S, Liu Y, Rajh T, Silver SC, Tiede DM (2013) Nanostructured TiO2/polypyrrole for visible light photocatalysis. J Phys Chem C 117:15540

    CAS  Google Scholar 

  23. 23.

    Muktha B, Madras G, Guru Row TN, Scherf U, Patil S (2007) Conjugated polymers for photocatalysis. J Phys Chem B 111:7994

    CAS  PubMed  Google Scholar 

  24. 24.

    Tayel A, Ramadan AR, Seoud OAE (2018) Titanium dioxide/graphene and titanium dioxide/graphene oxide nanocomposites: synthesis, characterization and photocatalytic applications for water decontamination. Catalysts 8:491

    Google Scholar 

  25. 25.

    Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027

    CAS  PubMed  Google Scholar 

  26. 26.

    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906

    CAS  PubMed  Google Scholar 

  27. 27.

    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228

    CAS  PubMed  Google Scholar 

  28. 28.

    Reddy KR, Karthik KV, Prasad SSB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169

    CAS  Google Scholar 

  29. 29.

    Sharma A, Karn RK, Pandiyan SK (2014) Synthesis of TiO2 nanoparticles by sol–gel method and their characterization. J Basic Appl Eng Res 1:1

    Google Scholar 

  30. 30.

    Boeva ZA, Sergeyev VG (2014) Polyaniline: synthesis, properties, and application. Pol Sci Ser C 56:144

    CAS  Google Scholar 

  31. 31.

    Vadivel S, Theerthagiri J, Madhavan J, Maruthamani D (2016) Synthesis of Polyaniline/graphene oxide composite via ultrasonication method for photocatalytic applications. Mater Focus 5:393

    CAS  Google Scholar 

  32. 32.

    Yu JC, Zhang LZ, Zheng Z, Zhao JC (2003) Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem Mater 15:2280

    CAS  Google Scholar 

  33. 33.

    Ba-Abbad M, Kadhum AH, Mohamad A, Takriff MS, Sopian K (2012) Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int J Electrochem Sci 7:4871

    CAS  Google Scholar 

  34. 34.

    Lai C, Li GR, Dou YY, Gao XP (2010) Mesoporous polyaniline or polypyrrole/anatase TiO2 nanocomposites as anode materials for lithium-ion batteries. Electrochim Acta 55:4567

    CAS  Google Scholar 

  35. 35.

    Al-Hussaini S, Eltabie RK, Rashad MEE (2016) One-pot modern fabrication and characterization of TiO2 @terpoly(aniline, anthranilic acid and o-phenylenediamine) core-shell nanocomposites viapolycondensation. Polymer 101:328

    CAS  Google Scholar 

  36. 36.

    Jumat NA, Wai PS, Ching JJ, Basirun WJ (2017) Synthesis of polyaniline-TiO2 nanocomposites and their application in photocatalytic degradation. Polym Polym Compos 25:507

    CAS  Google Scholar 

  37. 37.

    Mostafaei A, Zolriasatein A (2012) Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Progress in Natural Science: Mater. Inter. 22:273

    Google Scholar 

  38. 38.

    Tao P, Li Y, Rungta A, Schadler LS (2011) TiO2 nanocomposites with high refractive index and transparency. J Mater Chem 21:18623

    CAS  Google Scholar 

  39. 39.

    Manivel P, Dhakshnamoorthy M, Balamurugan A, Ponpandian N, Mangalaraj D, Viswanathan C (2013) Conducting polyaniline-graphene oxide fibrous nanocomposites: preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. RSC Adv 3:14428

    CAS  Google Scholar 

  40. 40.

    Katoch A, Burkhart M, Hwang T, Kim SS (2012) Synthesis of polyaniline/TiO2 hybrid nanoplates via a sol–gel chemical method. Chem Eng J 192:262

    CAS  Google Scholar 

  41. 41.

    Li F, Jiang X, Zhao J, Zhang S (2015) Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16:488

    CAS  Google Scholar 

  42. 42.

    Zhao D, Sheng G, Chen C, Wang X (2012) Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Appl Catal B Env 111:303

    Google Scholar 

  43. 43.

    Selvin SSP, Kumar AG, Sarala L, Rajaram R, Sathiyan A, Princy Merlin J, Lydia IS (2018) Photocatalytic degradation of rhodamine B using zinc oxide activated charcoal polyaniline nanocomposite and its survival assessment using aquatic animal model. ACS Sust Chem Eng 61:258

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Amrit Puzari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baruah, S., Kumar, S., Nayak, B. et al. Optoelectronically suitable graphene oxide-decorated titanium oxide/polyaniline hybrid nanocomposites and their enhanced photocatalytic activity with methylene blue and rhodamine B dye. Polym. Bull. 78, 1703–1720 (2021). https://doi.org/10.1007/s00289-020-03182-8

Download citation


  • GO/PANI/TiO2 nanocomposite
  • Photocatalysis
  • Optoelectronics
  • Fluorescence emitter
  • Semiconductor
  • TiO2 NPs