CuO/LDPE nanocomposite for active food packaging application: a comparative study of its antibacterial activities with ZnO/LDPE nanocomposite

Abstract

The usage of active antimicrobial food packaging systems has become inevitable with the globalization of food trade, and in this regards antimicrobial nanocomposites have attracted universal attention. The present study aims to examine the antimicrobial effects of CuO-containing nanocomposite on two important spoilage bacteria, namely gram-positive Bacillus subtilis and gram-negative Enterobacter aerogenes, and comparison of its antibacterial effect with ZnO-containing nanocomposite. To synthesize the nanoparticles of CuO, sonochemical method has been employed. The nanoparticles have been characterized by X-ray diffraction. By melt mixing in a twin-screw extruder, nanocomposite film containing 2 wt% CuO nanoparticles was prepared. CuO-containing nanocomposites had reduced the growth of both bacteria. CuO-containing nanocomposite had a stronger antibacterial effect on both of the microorganisms in comparison with ZnO-containing nanocomposite, which could be ascribed to their small size. Due to the significant antibacterial effect of ZnO- and CuO-containing nanocomposites, they have the potential to be used in active food packaging.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3(2):113–126

    CAS  Article  Google Scholar 

  2. 2.

    Llorens A, Lloret E, Picouet P, Fernandez A (2012) Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices. Int J Food Microbiol 158(2):113–119

    CAS  Article  Google Scholar 

  3. 3.

    de Azeredo HM (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol 30(1):56–69

    Article  Google Scholar 

  4. 4.

    Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76. https://doi.org/10.1111/j.1574-6968.2007.01012.x

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Lee KT (2010) Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials. Meat Sci 86(1):138–150

    CAS  Article  Google Scholar 

  6. 6.

    Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov Food Sci Emerg Technol 11(4):742–748

    CAS  Article  Google Scholar 

  7. 7.

    Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanoparticle Res 9(3):479–489. https://doi.org/10.1007/s11051-006-9150-1

    CAS  Article  Google Scholar 

  8. 8.

    Gold K, Slay B, Knackstedt M, Gaharwar AK (2018) Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv Ther 1:1700033

    Article  Google Scholar 

  9. 9.

    Rezić I, Haramina T, Rezić T (2017) 15—Metal nanoparticles and carbon nanotubes—perfect antimicrobial nano-fillers in polymer-based food packaging materials. In: Grumezescu AM (ed) food packaging. Academic Press, Berlin, pp 497–532. https://doi.org/10.1016/B978-0-12-804302-8.00015-7

    Google Scholar 

  10. 10.

    Kalyani RL, Venkatraju J, Kollu P, Rao NH, Pammi SVN (2015) Low temperature synthesis of various transition metal oxides and their antibacterial activity against multidrug resistance bacterial pathogens. Korean J Chem Eng 32(5):911–916

    CAS  Article  Google Scholar 

  11. 11.

    Tamayo L, Azócar M, Kogan M, Riveros A, Páez M (2016) Copper–polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C 69:1391–1409

    CAS  Article  Google Scholar 

  12. 12.

    Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24(1):19–29. https://doi.org/10.1016/j.tifs.2011.10.001

    CAS  Article  Google Scholar 

  13. 13.

    Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652

    CAS  Article  Google Scholar 

  14. 14.

    Hoseinnejad M, Jafari SM, Katouzian I (2018) Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol 44(2):161–181

    CAS  Article  Google Scholar 

  15. 15.

    Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590

    CAS  Article  Google Scholar 

  16. 16.

    Esmailzadeh H, Sangpour P, Shahraz F, Hejazi J, Khaksar R (2016) Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes. Mater Sci Eng C 58:1058–1063

    CAS  Article  Google Scholar 

  17. 17.

    Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010) Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 22(3–4):408–413

    Google Scholar 

  18. 18.

    Shankar S, Teng X, Li G, Rhim J-W (2015) Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocoll 45:264–271

    CAS  Article  Google Scholar 

  19. 19.

    Castro-Mayorga JL, Fabra MJ, Pourrahimi AM, Olsson RT, Lagaron JM (2017) The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications. Food Bioprod Process 101:32–44. https://doi.org/10.1016/j.fbp.2016.10.007

    CAS  Article  Google Scholar 

  20. 20.

    Beigmohammadi F, Peighambardoust SH, Hesari J, Peighambardoust SJ (2018) Inhibition of coliform bacteria in ultra-filtrated cheese packed in nanocomposite films containing Cloisite30B-metal nanoparticles. Nutr Food Sci Res 5(1):25–32

    Google Scholar 

  21. 21.

    Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. Int J Biol Macromol 73:109–114

    CAS  Article  Google Scholar 

  22. 22.

    Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7(3):219–242

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ivask A, Juganson K, Bondarenko O, Mortimer M, Aruoja V, Kasemets K, Blinova I, Heinlaan M, Slaveykova V, Kahru A (2014) Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review. Nanotoxicology 8(Supp 1):57–71

    CAS  Article  Google Scholar 

  24. 24.

    Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8(21):3326–3337

    CAS  Article  Google Scholar 

  25. 25.

    Ekthammathat N, Thongtem T, Thongtem S (2013) Antimicrobial activities of CuO films deposited on Cu foils by solution chemistry. Appl Surf Sci 277:211–217

    CAS  Article  Google Scholar 

  26. 26.

    Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22(1):64–75

    CAS  Article  Google Scholar 

  27. 27.

    Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):65

    Article  Google Scholar 

  28. 28.

    Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284

    CAS  Article  Google Scholar 

  29. 29.

    Borkow G, Gabbay J (2009) Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr Chem Biol 3(3):272–278

    CAS  Google Scholar 

  30. 30.

    Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 7:6003

    CAS  Article  Google Scholar 

  31. 31.

    Ahamed M, Alhadlaq HA, Khan M, Karuppiah P, Al-Dhabi NA (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater 2014:17

    Article  Google Scholar 

  32. 32.

    Mahapatra O, Bhagat M, Gopalakrishnan C, Arunachalam KD (2008) Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Exp Nanosci 3(3):185–193

    CAS  Article  Google Scholar 

  33. 33.

    Ramazanzadeh B, Jahanbin A, Yaghoubi M, Shahtahmassbi N, Ghazvini K, Shakeri M, Shafaee H (2015) Comparison of antibacterial effects of ZnO and CuO nanoparticles coated brackets against Streptococcus mutans. J Dent 16(3):200

    Google Scholar 

  34. 34.

    Duffy LL, Osmond-McLeod MJ, Judy J, King T (2018) Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control 92:293–300

    CAS  Article  Google Scholar 

  35. 35.

    Azam A, Ahmed AS, Oves M, Khan M, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and-negative bacterial strains. Int J Nanomed 7:3527

    CAS  Article  Google Scholar 

  36. 36.

    Chang Y-N, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5(12):2850–2871

    CAS  Article  Google Scholar 

  37. 37.

    Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19(6):842–852

    CAS  Article  Google Scholar 

  38. 38.

    Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    CAS  Article  Google Scholar 

  39. 39.

    Tam K, Djurišić A, Chan C, Xi Y, Tse C, Leung Y, Chan W, Leung F, Au D (2008) Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 516(18):6167–6174

    CAS  Article  Google Scholar 

  40. 40.

    Bhuyan T, Khanuja M, Sharma R, Patel S, Reddy M, Anand S, Varma A (2015) A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action. J Nanopart Res 17(7):288

    Article  Google Scholar 

  41. 41.

    Polat S, Fenercioğlu H, Güçlü M (2018) Effects of metal nanoparticles on the physical and migration properties of low density polyethylene films. J Food Eng 229:32–42

    CAS  Article  Google Scholar 

  42. 42.

    Abbas M, Buntinx M, Deferme W, Peeters R (2019) (Bio) polymer/ZnO nanocomposites for packaging applications: a review of gas barrier and mechanical properties. Nanomaterials 9(10):1494

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research and Technology Council of National Nutrition and Food Technology Research Institute (721391010) and Materials and Energy Research Center (MERC) for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jalal Hejazi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Esmailzadeh, H., Sangpour, P., Shahraz, F. et al. CuO/LDPE nanocomposite for active food packaging application: a comparative study of its antibacterial activities with ZnO/LDPE nanocomposite. Polym. Bull. 78, 1671–1682 (2021). https://doi.org/10.1007/s00289-020-03175-7

Download citation

Keywords

  • Metal nanoparticles
  • Zinc oxide
  • Copper oxide
  • Shelf life