Fabrication of nano-CuO-loaded PVA composite films with enhanced optomechanical properties


Herein, flexible, strong and optically tunable nano-CuO-loaded poly(vinyl alcohol) (PVA) composite films were fabricated by means of solution casting approach. The nanocomposite films were characterized using advanced analytical techniques. A small loading with CuO nanofiller resulted in prominent modifications of structural and optomechanical attributes of PVA-based nanocomposites. The comprehensive band structure and mechanical investigations of the prepared samples have been reported. The loading with just 0.5 wt% CuO nanofiller in PVA resulted in significant changes in direct band gap (5.29 to 3.16 eV), indirect band gap (4.91 to 2.88 eV), Urbach energy (0.22 to 1.12 eV), dispersion energy (1.45 to 1.92 eV), oscillator energy (5.74 to 3.25 eV), tensile strength (25.6 to 42.2 MPa), Young’s modulus (144 to 215 MPa), elongation at break (152.4 to 206.1%) and the flexural strength (4.1 to 32.2 MPa). The optical band gap calculated using Tauc’s relation, Wemple and DiDomenico single oscillator model and dielectric loss approach resulted in nearby values. Various theoretical models were employed to validate the experimentally determined Young’s moduli values. A possible application of such nanocomposite films might be in optoelectronic devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Dakshayini BS, Reddy KR, Mishra A, Shetti NP, Malode SJ, Basu S, Naveen S, Raghu AV (2019) Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchem J. https://doi.org/10.1016/j.microc.2019.02.061

    Article  Google Scholar 

  2. 2.

    Aslam M, Kalyar MA, Raza ZA (2018) Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci 58:2119–2132

    CAS  Google Scholar 

  3. 3.

    Najafi M, Ansari R, Darvizeh A (2019) Effect of cryogenic aging on nanophased fiber metal laminates and glass/epoxy composites. Polym Compos 40:2523–2533

    CAS  Google Scholar 

  4. 4.

    Ram R, Khastgir D, Rahaman M (2019) Electromagnetic interference shielding effectiveness and skin depth of poly(vinylidene fluoride)/particulate nano-carbon filler composites: prediction of electrical conductivity and percolation threshold. Polym Int 68:1194–1203

    CAS  Google Scholar 

  5. 5.

    Son DR, Raghu AV, Reddy KR, Jeong HM (2016) Compatibility of thermally reduced graphene with polyesters. J Macromol Sci B 55:1099–1110

    CAS  Google Scholar 

  6. 6.

    Reddy KR, Karthik KV, Prasad SB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174

    CAS  Google Scholar 

  7. 7.

    Reddy KR, Jeong HM, Lee Y, Raghu AV (2010) Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J Polym Sci Polym Chem 48:1477–1484

    CAS  Google Scholar 

  8. 8.

    Ram R, Khastgir D, Rahaman M (2018) Physical properties of polyvinylidene fluoride/multi-walled carbon nanotube nanocomposites with special reference to electromagnetic interference shielding effectiveness. Adv Polym Technol 37:3287–3296

    CAS  Google Scholar 

  9. 9.

    Han SJ, Lee HI, Jeong HM, Kim BK, Raghu AV, Reddy KR (2014) Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J Macromol Sci B 53:1193–1204

    CAS  Google Scholar 

  10. 10.

    Reddy KR, Sin BC, Ryu KS, Kim JC, Chung H, Lee Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159:595–603

    CAS  Google Scholar 

  11. 11.

    Hassan M, Reddy KR, Haque E, Faisal SN, Ghasemi S, Minett AI, Gomes VG (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8

    CAS  Google Scholar 

  12. 12.

    Choi SH, Kim DH, Raghu AV, Reddy KR, Lee HI, Yoon KS, Jeong HM, Kim BK (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci Part B 51(1):197–207

    CAS  Google Scholar 

  13. 13.

    Rao JK, Raizada A, Ganguly D, Mankad MM, Satayanarayana SV, Madhu GM (2015) Investigation of structural and electrical properties of novel CuO–PVA nanocomposite films. J Mater Sci 50:7064–7074

    CAS  Google Scholar 

  14. 14.

    Khanna PK, Gokhale R, Subbarao VVVS, Vishwanath AK, Das BK, Satyanarayana CVV (2005) PVA stabilized gold nanoparticles by use of unexplored albeit conventional reducing agent. Mater Chem Phys 92:229–233

    CAS  Google Scholar 

  15. 15.

    Aslam M, Kalyar MA, Raza ZA (2019) Effect of separate zinc, copper and graphene oxides nanofillers on electrical properties of PVA based composite strips. J Electron Mater 48:1116–1121

    CAS  Google Scholar 

  16. 16.

    Aslam M, Kalyar MA, Raza ZA (2019) Investigation of structural and thermal properties of distinct nanofillers-doped PVA composite films. Polym Bull 76:73–86

    CAS  Google Scholar 

  17. 17.

    Chandrakala HN, Ramaraj B, Shivakumaraiah S (2014) Optical properties and structural characteristics of zinc oxidecerium oxide doped polyvinyl alcohol films. J Alloys Compd 586:333–342

    CAS  Google Scholar 

  18. 18.

    Kanimozhi C, Balraju P, Sharma GD, Patil S (2010) Synthesis of diketopyrrolopyrrole containing copolymers: a study of their optical and photovoltaic properties. J Phys Chem B 114:3095–3103

    CAS  PubMed  Google Scholar 

  19. 19.

    Selvi J, Mahalakshmi S, Parthasarathy V, Hu C, Lin YF, Tung KL, Anbarasan R, Annie AA (2019) Optical, thermal, mechanical properties, and non-isothermal degradation kinetic studies on PVA/CuO nanocomposites. Polym Compos 40:3737–3748

    CAS  Google Scholar 

  20. 20.

    Manjunath A, Irfan M, Anushree KP, Vinutha KM, Yamunarani N (2016) Synthesis and characterization of CuO nanoparticles and CuO doped PVA nanocomposites. Adv Mater Phys Chem 6:263–273

    CAS  Google Scholar 

  21. 21.

    Srikanth C, Sridhar BC, Prasad MV, Mathad RD (2016) Characterization and dc conductivity of novel Zno doped polyvinyl alcohol (PVA) nano-composite films. J Adv Phys 5:105–109

    Google Scholar 

  22. 22.

    Aslam M, Kalyar MA, Raza ZA (2016) Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets. Mater Res Express 3:105036

    Google Scholar 

  23. 23.

    Raza ZA, Anwar F, Ahmad S, Aslam M (2016) Fabrication of ZnO incorporated chitosan nanocomposites for enhanced functional properties of cellulosic fabric. Mater Res Express 3:115001

    Google Scholar 

  24. 24.

    Raza ZA, Aslam M, Azeem A, Maqsood HS (2019) Development and characterization of nano-crystalline cellulose incorporated poly (lactic acid) composite films. Materialwiss Werks 50:64–73

    CAS  Google Scholar 

  25. 25.

    Sahay R, Sundaramurthy J, Kumar PS, Thavasi V, Mhaisalkar SG, Ramakrishna S (2012) Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation. J Solid State Chem 186:261–267

    CAS  Google Scholar 

  26. 26.

    Sharma A, Varshney M, Park J, Ha TK, Chae KH, Shin HJ (2015) XANES, EXAFS and photocatalytic investigations on copper oxide nanoparticles and nanocomposites. RSC Adv 5:21762–21771

    CAS  Google Scholar 

  27. 27.

    Mansour AF, Mansour SF, Abdo MA (2015) Improvement structural and optical properties of ZnO/PVA nanocomposites. IOSR J Appl Phys 7:60–69

    Google Scholar 

  28. 28.

    Aslam M, Kalyar MA, Raza ZA (2018) Investigation of zinc oxide-loaded poly(vinyl alcohol) nanocomposite films in tailoring their structural, optical and mechanical properties. J Electron Mater 47:3912–3926

    CAS  Google Scholar 

  29. 29.

    Jayasekara R, Harding I, Bowater I, Christie GB, Lonergan GT (2004) Preparation, surface modification and characterization of solution cast starch PVA blended films. Polym Test 23:17–27

    CAS  Google Scholar 

  30. 30.

    Abdelaziz M, Ghannam MM (2010) Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Physica B Condens Matter 405:958–964

    CAS  Google Scholar 

  31. 31.

    Ananth AN, Umapathy S, Sophia J, Mathavan T, Mangalaraj D (2011) On the optical and thermal properties of in situ/ex situ reduced Ag NP’s/PVA composites and its role as a simple SPR-based protein sensor. Appl Nanosci 1:87–96

    Google Scholar 

  32. 32.

    Mora ES, Barojas EG, Rojas ER, Gonzalez RS (2007) Morphological, optical and photo catalytic properties of TiO2–Fe2O3 multilayers. Sol Energy Mat Sol Cells 91:1412–1415

    Google Scholar 

  33. 33.

    Svorcik V, Lyutakov O, Huttel I (2008) Thickness dependence of refractive index and optical gap of PMMA layers prepared under electrical field. J Mater Sci Mater Electron 19:363–367

    CAS  Google Scholar 

  34. 34.

    Khan MS, Sultana S, Raza ZA (2014) Electrical, structural, and optical characterization of coal ash–PEO/PMMA blend composites. Ionics 20:353–362

    CAS  Google Scholar 

  35. 35.

    Aziz SB, Ahmed HM, Hussein AM, Fathulla AB, Wsw RM, Hussein RT (2015) Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. J Mater Sci Mater Electron 26:8022–8028

    CAS  Google Scholar 

  36. 36.

    Tauc J, Menth A, Wood DL (1970) Optical and magnetic investigations of the localized states in semiconducting glasses. Phys Rev Lett 25:749

    CAS  Google Scholar 

  37. 37.

    Aslam M, Kalyar MA, Raza ZA (2017) Fabrication of reduced graphene oxide nanosheets doped PVA composite films for tailoring their opto-mechanical properties. Appl Phys A 123:424

    Google Scholar 

  38. 38.

    Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92:1324

    CAS  Google Scholar 

  39. 39.

    Aslam M, Kalyar MA, Raza ZA (2017) Graphene oxides nanosheets mediation of poly (vinyl alcohol) films in tuning their structural and opto-mechanical attributes. J Mater Sci Mater Electron 28:13401–13413

    CAS  Google Scholar 

  40. 40.

    Elkomy GM, Mousa SM, Mostafa HA (2016) Structural and optical properties of pure PVA/PPY and cobalt chloride doped PVA/PPY films. Arab J Chem 9:S1786–S1792

    CAS  Google Scholar 

  41. 41.

    Singh N, Khanna PK (2007) In situ synthesis of silver nano-particles in polymethylmethacrylate. Mater Chem Phys 104:367–372

    CAS  Google Scholar 

  42. 42.

    Aziz SB (2016) Modifying poly (vinyl alcohol)(PVA) from insulator to small-bandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J Electron Mater 45:736–745

    CAS  Google Scholar 

  43. 43.

    Abdullah OG, Aziz SB, Omer KM, Salih YM (2015) Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J Mater Sci Mater Electron 26:5303–5309

    CAS  Google Scholar 

  44. 44.

    Jin J, Qi R, Su Y, Tong M, Zhu J (2013) Preparation of high-refractive-index PMMA/TiO2 nanocomposites by one-step in situ solvothermal method. Iran Polym J 22:767–774

    CAS  Google Scholar 

  45. 45.

    Abdullah OG, Saber DR (2012) Optical absorption of polyvinyl alcohol films doped with nickel chloride. Appl Mech Mater 110:177

    Google Scholar 

  46. 46.

    Wemple SH, DiDomenico M (1969) Optical dispersion and the structure of solids. Phys Rev Lett 23:1156

    CAS  Google Scholar 

  47. 47.

    Sheela T, Bhajantri RF, Ravindrachary V, Rathod SG, Pujari PK, Poojary B, Somashekar R (2014) Effect of UV irradiation on optical, mechanical and microstructural properties of PVA/NaAlg blends. Radiat Phys Chem 03:45–52

    Google Scholar 

  48. 48.

    Yu L, Li D, Zhao S, Li G, Yang K (2012) First principles study on electronic structure and optical properties of ternary GaAs:Bi alloy. Materials 5:2486–2497

    CAS  PubMed Central  Google Scholar 

  49. 49.

    Bindu P, Thomas S (2013) Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. J Phys Chem B 117:12632–12648

    CAS  PubMed  Google Scholar 

  50. 50.

    Sunny AT, Adhikari R, Mathew S, Thomas S (2016) Copper oxide nanoparticles in an epoxy network: microstructure, chain confinement and mechanical behaviour. Phys Chem Chem Phys 18:19655–19667

    CAS  PubMed  Google Scholar 

  51. 51.

    Lu F, Yu H, Yan C, Yao J (2016) Polylactic acid nanocomposite films with spherical nanocelluloses as efficient nucleation agents: effects on crystallization, mechanical and thermal properties. RSC Adv 6:46008–46018

    CAS  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Muhammad Aslam or Zulfiqar Ali Raza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aslam, M., Kalyar, M.A. & Raza, Z.A. Fabrication of nano-CuO-loaded PVA composite films with enhanced optomechanical properties. Polym. Bull. 78, 1551–1571 (2021). https://doi.org/10.1007/s00289-020-03173-9

Download citation


  • Nanofiller
  • Polyvinyl alcohol
  • Band gap
  • Refractive index
  • Young’s modulus