Rheological investigation of the viscoelastic thixotropic behavior of synthesized polyethylene glycol-modified polyacrylamide hydrogels using different accelerators


The present work is mainly focused on the synthesis and comprehensive rheological investigation of uniform and large macroporous polyethylene glycol-modified polyacrylamide hydrogels [PEG-m-P(AAm)] through free radical polymerization using different accelerators (ascorbic acid (AsA), thermal activation (60 °C) and N,N′,N″,N‴-tetramethyl ethylenediamine (TEMED)). The synthesis and surface morphology of the hydrogels were confirmed by FTIR and SEM techniques. Rheological investigation was carried out to determine the effect of accelerator nature on the rheological parameters and pseudo-plastic behavior of polymer hydrogels. A decline in viscosity with the increase in shear rate confirms the non-Newtonian pseudo-plastic behavior of hydrogels. From the creep-recovery study, the least strain (0.2) and creep compliance (2 × 10−2 Pa−1) for the thermally activated synthesized polymer hydrogel show more elastic property than the hydrogels synthesized by AsA and TEMED having strain values of 0.6 and 2.2, respectively. The thixotropic character of the hydrogels was found by the hysteresis loop test. The hydrogels prepared via AsA (998.825 Pa s−1) showed greater thixotropic behavior, followed by thermal activation (652.857 Pa s−1), and TEMED (531.9 Pa s−1) respectively. The hydrogels synthesized by different routes attained a completely different morphology, which can be applicable for specific applications. The obtained results verify that these materials may be used for the removal of potentially toxic materials, as a carrier for bioactive compounds and in cosmetic industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Darge HF, Andrgie AT, Tsai HC, Lai JY (2019) Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. Int J Biol Macromol 133:545–563. https://doi.org/10.1016/j.ijbiomac.2019.04.131

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Unterman S, Charles LF, Strecker SE, Kramarenko D, Pivovarchik D, Edelman ER, Artzi N (2017) Hydrogel nanocomposites with independently tunable rheology and mechanics. ACS Nano 11(3):2598–2610

    CAS  Article  Google Scholar 

  3. 3.

    Pertici V, Pin-Barre C, Rivera C, Pellegrino C, Laurin J, Gigmes D, Trimaille T (2018) Degradable and injectable hydrogel for drug delivery in soft tissues. Biomacromol 20(1):149–163

    Article  Google Scholar 

  4. 4.

    Shin BY, Cha BG, Jeong JH, Kim J (2017) Injectable macroporous ferrogel microbeads with a high structural stability for magnetically actuated drug delivery. ACS Appl Mater Interfaces 9(37):31372–31380

    CAS  Article  Google Scholar 

  5. 5.

    Drozdova MG, Zaytseva-Zotova DS, Akasov RA, Golunova AS, Artyukhov AA, Udartseva OO, Andreeva ER, Lisovyy DE, Shtilman MI, Markvicheva EA (2017) Macroporous modified poly (vinyl alcohol) hydrogels with charged groups for tissue engineering: preparation and in vitro evaluation. Mater Sci Eng: C 75:1075–1082

    CAS  Article  Google Scholar 

  6. 6.

    Castaldo R, Gentile G, Avella M, Carfagna C, Ambrogi V (2017) Microporous hyper-crosslinked polystyrenes and nanocomposites with high adsorption properties: a review. Polymers 9(12):651

    Article  Google Scholar 

  7. 7.

    Lv J, Sun B, Jin J, Jiang W (2019) Mechanical and slow-released property of poly (acrylamide) hydrogel reinforced by diatomite. Mater Sci Eng: C 99:315–321

    CAS  Article  Google Scholar 

  8. 8.

    Wang Y, Tong L, Zheng Y, Pang S, Sha J, Li L, Zhao G (2019) Hydrogels with self-healing ability, excellent mechanical properties and biocompatibility prepared from oxidized gum arabic. Eur Polym J 117:363–371

    CAS  Article  Google Scholar 

  9. 9.

    Fang Y, Duan B, Lu A, Liu M, Liu H, Xu X, Zhang L (2015) Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution. Biomacromol 16(4):1410–1417

    CAS  Article  Google Scholar 

  10. 10.

    Li S-N, Li B, Gong L-X, Yu Z-R, Feng Y, Jia D, Zhou Y, Tang L-C (2019) Enhanced mechanical properties of polyacrylamide/chitosan hydrogels by tuning the molecular structure of hyperbranched polysiloxane. Mater Des 162:162–170

    CAS  Article  Google Scholar 

  11. 11.

    Wiecinska P, Graule T, Szafran M (2014) L-Ascorbic acid as a new activator in fabrication of ceramics by techniques using in situ polymerization. J Eur Ceram Soc 34(6):1581–1589

    CAS  Article  Google Scholar 

  12. 12.

    Matzek LW, Tipton MJ, Farmer AT, Steen AD, Carter KE (2018) Understanding electrochemically activated persulfate and its application to ciprofloxacin abatement. Environ Sci Technol 52(10):5875–5883

    CAS  Article  Google Scholar 

  13. 13.

    Maurya NK, Mandal A (2016) Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery. Petrol Sci Technol 34(5):429–436

    CAS  Article  Google Scholar 

  14. 14.

    Du C, Hill RJ (2019) Complementary-DNA-strand cross-linked polyacrylamide hydrogels. Macromolecules 52(17):6683–6697

    CAS  Article  Google Scholar 

  15. 15.

    Ghalia MA, Dahman Y (2017) Fabrication and enhanced mechanical properties of porous PLA/PEG copolymer reinforced with bacterial cellulose nanofibers for soft tissue engineering applications. Polym Test 61:114–131

    Article  Google Scholar 

  16. 16.

    Xu Z, Wang S, Li Y, Wang M, Shi P, Huang X (2014) Covalent functionalization of graphene oxide with biocompatible poly (ethylene glycol) for delivery of paclitaxel. ACS Appl Mater interfaces 6(19):17268–17276

    CAS  Article  Google Scholar 

  17. 17.

    Javadi A, Mehr HS, Soucek MD (2017) (Meth) acrylated poly (ethylene glycol) s as precursors for rheology modifiers, superplasticizers and electrolyte membranes: a review. Polym Int 66(12):1765–1786

    CAS  Article  Google Scholar 

  18. 18.

    Daviran M, Schultz KM (2019) Characterizing the dynamic rheology in the pericellular region by human mesenchymal stem cell re-engineering in PEG-peptide hydrogel scaffolds. Rheol Acta 58(8):421–437

    CAS  Article  Google Scholar 

  19. 19.

    Shakeel A, Mahmood H, Farooq U, Ullah Z, Yasin S, Iqbal T, Chassagne C, Moniruzzaman M (2019) Rheology of pure ionic liquids and their complex fluids: A review. ACS Sust Chem Eng 7(16):13586–13626

    CAS  Article  Google Scholar 

  20. 20.

    Xu X, Chen J (2017) Structural mechanism for viscosity of semiflexible polymer melts in shear flow. ACS Macro Lett 6(4):331–336

    CAS  Article  Google Scholar 

  21. 21.

    Liu Q, Li M, Gu Y, Wang S, Zhang Y, Li Q, Gao L, Zhang Z (2015) Interlocked CNT networks with high damping and storage modulus. Carbon 86:46–53

    CAS  Article  Google Scholar 

  22. 22.

    Rehman TU, Shah LA (2019) Rheological investigation of GO doped p (APTMACl) composite hydrogel. Z Phys Chem. https://doi.org/10.1515/zpch-2019-1416

    Article  Google Scholar 

  23. 23.

    Davoudizadeh S, Sarsabili M, Khezri K (2017) Synthesis and characterization of polystyrene/mesoporous diatomite composites via activators generated by electron transfer for atom transfer radical polymerization. Z Phys Chem 231(9):1543–1558

    CAS  Article  Google Scholar 

  24. 24.

    Christian P, Giles MR, Griffiths RM, Irvine DJ, Major RC, Howdle SM (2000) Free radical polymerization of methyl methacrylate in supercritical carbon dioxide using a pseudo-graft stabilizer: effect of monomer, initiator, and stabilizer concentrations. Macromolecules 33(25):9222–9227

    CAS  Article  Google Scholar 

  25. 25.

    Shah LA, Javed R, Khan A, Bibi I, Khattak NS, Alam S (2019) One-pot synthesis and rheological study of cationic poly (3-acrylamidopropyltrimethyl ammoniumchloride) P (APTMACl) polymer hydrogels. Z Phys Chem 233(8):1145–1159

    CAS  Article  Google Scholar 

  26. 26.

    Horvatić A, Dodig I, Vuletić T, Pavoković D, Hameršak Z, Butorac A, Cindrić M (2013) Comparison between enhanced MALDI in-source decay by ammonium persulfate and N-or C-terminal derivatization methods for detailed peptide structure determination. Anal Chem 85(8):3940–3947

    Article  Google Scholar 

  27. 27.

    Long A, Lei Y, Zhang H (2014) Degradation of toluene by a selective ferrous ion activated persulfate oxidation process. Ind Eng Chem Res 53(3):1033–1039

    CAS  Article  Google Scholar 

  28. 28.

    Lin H, Zhang H, Hou L (2014) Degradation of CI acid orange 7 in aqueous solution by a novel electro/Fe3O4/PDS process. J Hazard Mater 276:182–191

    CAS  Article  Google Scholar 

  29. 29.

    Avendaño C, Menendez JC (2015) Medicinal chemistry of anticancer drugs. Elsevier, Oxford

    Google Scholar 

  30. 30.

    Dorigato A, Pegoretti A, Penati A (2010) Linear low-density polyethylene/silica micro-and nanocomposites: dynamic rheological measurements and modelling. Exp Polym Lett 4(2):115–129

    CAS  Article  Google Scholar 

  31. 31.

    Gilbert M (2017) States of aggregation in polymers. In: Brydson's plastics materials. Elsevier, London, pp 39–57

  32. 32.

    Zerpa A, Pakzad L, Fatehi P (2018) Hardwood Kraft lignin-based hydrogels: production and performance. ACS Omega 3(7):8233–8242

    CAS  Article  Google Scholar 

  33. 33.

    Morariu S, Bercea M, Sacarescu L (2014) Tailoring of clay/poly (ethylene oxide) hydrogel properties by chitosan incorporation. Ind Eng Chem Res 53(35):13690–13698

    CAS  Article  Google Scholar 

  34. 34.

    Mortazavi-Manesh S, Shaw JM (2014) Thixotropic rheological behavior of Maya crude oil. Energy Fuels 28(2):972–979

    CAS  Article  Google Scholar 

  35. 35.

    Shah LA, Rehman TU, Khan M (2019) Synthesis of graphene oxide doped poly (2-acrylamido-2-methyl propane sulfonic acid)[GO@ p (AMPS)] composite hydrogel with pseudo-plastic thixotropic behavior. Polym Bull. https://doi.org/10.1007/s00289-019-02951-4

    Article  Google Scholar 

Download references


The authors are highly grateful to Higher Education Commission of Pakistan for financial support under project No: NRPU-HEC-7309.

Author information



Corresponding author

Correspondence to Luqman Ali Shah.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, I., Shah, L.A. Rheological investigation of the viscoelastic thixotropic behavior of synthesized polyethylene glycol-modified polyacrylamide hydrogels using different accelerators. Polym. Bull. 78, 1275–1291 (2021). https://doi.org/10.1007/s00289-020-03163-x

Download citation


  • Rheology
  • Accelerator
  • Free radical polymerization
  • Creep
  • Thixotropic