Preparation of high-performance natural rubber/carbon black/molybdenum disulfide composite by using the premixture of epoxidized natural rubber and cysteine-modified molybdenum disulfide

Abstract

Molybdenum disulfide (MoS2) is a potential additive for rubber enhancement. However, its poor dispersion and weak interaction with matrix limit its further application. To improve the dispersion of MoS2 in natural rubber (NR) and enhance the interaction of MoS2 with matrix, single-layered MoS2 nanosheets are prepared and further modified by cysteine. The modified MoS2 nanosheets and epoxidized natural rubber (ENR) are premixed and then added into a NR/carbon black compound to obtain a NR/carbon black/ENR-modified MoS2 nanosheets composite. The reaction between modified MoS2 nanosheets and ENR is proved by FT-IR spectra. The modified MoS2 nanosheets can improve the dispersion of carbon black in NR, and ENR can significantly improve the dispersion of modified MoS2 nanosheets in the composite. The addition of ENR-modified MoS2 nanosheets premixture can improve the abrasion resistance, increase the crosslink density and control the dynamic mechanical properties of NR. These improved properties can be attributed to the good filler dispersion and enhanced filler–matrix interaction in NR matrix.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Wang L, Zhao S, Li A, Zhang X (2010) Study on the structure and properties of SSBR with large-volume functional groups at the end of chains. Polymer 51(9):2084–2090. https://doi.org/10.1016/j.polymer.2010.03.006

    CAS  Article  Google Scholar 

  2. 2.

    Wang M-J, Lu SX, Mahmud K (2000) Carbon-silica dual-phase filler, a new-generation reinforcing agent for rubber. Part VI. Time–temperature superposition of dynamic properties of carbon-silica-dual-phase-filler-filled vulcanizates. J Polym Sci Part B Polym Phys 38(9):1240–1249. https://doi.org/10.1002/(sici)1099-0488(20000501)38:9%3c1240:Aid-polb15%3e3.0.Co;2-q

    CAS  Article  Google Scholar 

  3. 3.

    Spratte T, Plagge J, Wunde M, Klüppel M (2017) Investigation of strain-induced crystallization of carbon black and silica filled natural rubber composites based on mechanical and temperature measurements. Polymer 115:12–20. https://doi.org/10.1016/j.polymer.2017.03.019

    CAS  Article  Google Scholar 

  4. 4.

    Tang Z, Zhang C, Wei Q, Weng P, Guo B (2016) Remarkably improving performance of carbon black-filled rubber composites by incorporating MoS2 nanoplatelets. Compos Sci Technol 132:93–100. https://doi.org/10.1016/j.compscitech.2016.07.001

    CAS  Article  Google Scholar 

  5. 5.

    Arroyo M, López-Manchado MA, Herrero B (2003) Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer 44(8):2447–2453. https://doi.org/10.1016/s0032-3861(03)00090-9

    CAS  Article  Google Scholar 

  6. 6.

    Valentini L, Bittolo Bon S, Lopez-Manchado MA, Verdejo R, Pappalardo L, Bolognini A, Alvino A, Borsini S, Berardo A, Pugno NM (2016) Synergistic effect of graphene nanoplatelets and carbon black in multifunctional EPDM nanocomposites. Compos Sci Technol 128:123–130. https://doi.org/10.1016/j.compscitech.2016.03.024

    CAS  Article  Google Scholar 

  7. 7.

    Gao J, He Y, Gong X, Xu J (2017) The role of carbon nanotubes in promoting the properties of carbon black-filled natural rubber/butadiene rubber composites. Results Phys 7:4352–4358. https://doi.org/10.1016/j.rinp.2017.09.044

    Article  Google Scholar 

  8. 8.

    Praveen S, Chattopadhyay PK, Albert P, Dalvi VG, Chakraborty BC, Chattopadhyay S (2009) Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure. Compos A Appl Sci Manuf 40(3):309–316. https://doi.org/10.1016/j.compositesa.2008.12.008

    CAS  Article  Google Scholar 

  9. 9.

    Qu L, Huang G, Zhang P, Nie Y, Weng G, Wu J (2010) Synergistic reinforcement of nanoclay and carbon black in natural rubber. Polym Int 59(10):1397–1402. https://doi.org/10.1002/pi.2881

    CAS  Article  Google Scholar 

  10. 10.

    Wu X, Lu C, Han Y, Zhou Z, Yuan G, Zhang X (2016) Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application. Compos Sci Technol 124:44–51. https://doi.org/10.1016/j.compscitech.2016.01.012

    CAS  Article  Google Scholar 

  11. 11.

    da Rocha EBD, Linhares FN, Gabriel CFS, de Sousa AMF, Furtado CRG (2018) Stress relaxation of nitrile rubber composites filled with a hybrid metakaolin/carbon black filler under tensile and compressive forces. Appl Clay Sci 151:181–188. https://doi.org/10.1016/j.clay.2017.10.008

    CAS  Article  Google Scholar 

  12. 12.

    Prasertsri S, Vudjung C, Inthisaeng W, Srichan S, Sapprasert K, Kongon J (2018) Comparison of reinforcing efficiency between calcium carbonate/carbon black and calcium carbonate/silica hybrid filled natural rubber composites. Defect Diffus Forum 382:94–98. https://doi.org/10.4028/www.scientific.net/DDF.382.94

    Article  Google Scholar 

  13. 13.

    Thepsuwan U, Sae-oui P, Sirisinha C, Thaptong P (2019) Influence of halloysite nanotube on properties of tire tread compounds filled with silica and carbon black hybrid filler. J Appl Polym Sci 136(4):46987. https://doi.org/10.1002/app.46987

    CAS  Article  Google Scholar 

  14. 14.

    Hassan M, Reddy KR, Haque E et al (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8. https://doi.org/10.1016/j.compscitech.2014.04.007

    CAS  Article  Google Scholar 

  15. 15.

    Choi SH, Kim DH, Raghu AV et al (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci Part B 51(1):197–207. https://doi.org/10.1080/00222348.2011.583193

    CAS  Article  Google Scholar 

  16. 16.

    Najafi M, Ansari R, Darvizeh A (2019) Effect of cryogenic aging on nanophased fiber metal laminates and glass/epoxy composites. Polym Compos 40(6):2523–2533. https://doi.org/10.1080/00222348.2011.583193

    CAS  Article  Google Scholar 

  17. 17.

    Reddy KR, Karthik KV, Prasad SBB et al (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174. https://doi.org/10.1016/j.poly.2016.08.029

    CAS  Article  Google Scholar 

  18. 18.

    Huang B, Wang D, Wang G, Zhang F, Zhou L (2017) Enhancing the colloidal stability and surface functionality of molybdenum disulfide (MoS2) nanosheets with hyperbranched polyglycerol for photothermal therapy. J Colloid Interface Sci 508:214–221. https://doi.org/10.1016/j.jcis.2017.08.062

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Cooper RC, Lee C, Marianetti CA, Wei X, Hone J, Kysar JW (2013) Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys Rev B 87(3):035423. https://doi.org/10.1103/PhysRevB.87.035423

    CAS  Article  Google Scholar 

  20. 20.

    Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5):2695–2700. https://doi.org/10.1021/nn1003937

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Huang Q, Liu M, Chen J, Wan Q, Tian J, Huang L, Jiang R, Wen Y, Zhang X, Wei Y (2017) Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes. Appl Surf Sci 419:35–44. https://doi.org/10.1016/j.apsusc.2017.05.006

    CAS  Article  Google Scholar 

  22. 22.

    Zhou K, Liu J, Wang B, Zhang Q, Shi Y, Jiang S, Hu Y, Gui Z (2014) Facile preparation of poly(methyl methacrylate)/MoS2 nanocomposites via in situ emulsion polymerization. Mater Lett 126:159–161. https://doi.org/10.1016/j.matlet.2014.04.040

    CAS  Article  Google Scholar 

  23. 23.

    Zhou K, Liu J, Zeng W, Hu Y, Gui Z (2015) In situ synthesis, morphology, and fundamental properties of polymer/MoS2 nanocomposites. Compos Sci Technol 107:120–128. https://doi.org/10.1016/j.compscitech.2014.11.017

    CAS  Article  Google Scholar 

  24. 24.

    Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M (2012) Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6(8):7311–7317. https://doi.org/10.1021/nn302422x

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Divigalpitiya WM, Frindt RF, Morrison SR (1989) Inclusion systems of organic molecules in restacked single-layer molybdenum disulfide. Science 246(4928):369–371. https://doi.org/10.1126/science.246.4928.369

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Chou SS, De M, Kim J, Byun S, Dykstra C, Yu J, Huang J, Dravid VP (2013) Ligand conjugation of chemically exfoliated MoS2. J Am Chem Soc 135(12):4584–4587. https://doi.org/10.1021/ja310929s

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Feng X, Wang B, Wang X, Wen P, Cai W, Hu Y, Liew KM (2016) Molybdenum disulfide nanosheets as barrier enhancing nanofillers in thermal decomposition of polypropylene composites. Chem Eng J 295:278–287. https://doi.org/10.1016/j.cej.2016.03.059

    CAS  Article  Google Scholar 

  28. 28.

    Wang D, Mu X, Cai W, Zhou X, Song L, Ma C, Hu Y (2019) Nano-bridge effects of carbon nanotubes on the properties reinforcement of two-dimensional molybdenum disulfide/polymer composites. Compos A Appl Sci Manuf 121:36–44. https://doi.org/10.1016/j.compositesa.2019.03.011

    CAS  Article  Google Scholar 

  29. 29.

    Weng P, Wei Q, Tang Z, Lin T, Guo B (2015) The influence of molybdenum disulfide nanoplatelets on the dispersion of nano silica in natural rubber composites. Appl Surf Sci 359:782–789. https://doi.org/10.1016/j.apsusc.2015.10.172

    CAS  Article  Google Scholar 

  30. 30.

    Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113(5):3766–3798. https://doi.org/10.1021/cr300263a

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Yin W, Yan L, Yu J, Tian G, Zhou L, Zheng X, Zhang X, Yong Y, Li J, Gu Z, Zhao Y (2014) High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 8(7):6922–6933. https://doi.org/10.1021/nn501647j

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Zou W, Zhou Q, Zhang X, Hu X (2018) Environmental transformations and algal toxicity of single-layer molybdenum disulfide regulated by humic acid. Environ Sci Technol 52(5):2638–2648. https://doi.org/10.1021/acs.est.7b04397

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Tahir MN, Zink N, Eberhardt M, Therese HA, Kolb U, Theato P, Tremel W (2006) Overcoming the insolubility of molybdenum disulfide nanoparticles through a high degree of sidewall functionalization using polymeric chelating ligands. Angew Chem Int Ed Engl 45(29):4809–4815. https://doi.org/10.1002/anie.200504211

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Shen L, Han X, Qian J, Hua D (2017) Amidoximated poly(vinyl imidazole)-functionalized molybdenum disulfide sheets for efficient sorption of a uranyl tricarbonate complex from aqueous solutions. RSC Adv 7(18):10791–10797. https://doi.org/10.1039/c6ra28051j

    CAS  Article  Google Scholar 

  35. 35.

    Lin Q, Lu Y, Ren W, Zhang Y (2015) The grafting reaction of epoxidized natural rubber with carboxyl ionic liquids and the ionic conductivity of solid electrolyte composites. RSC Adv 5(109):90031–90040. https://doi.org/10.1039/c5ra13457a

    CAS  Article  Google Scholar 

  36. 36.

    Vu CM, Vu HT, Choi HJ (2015) Fabrication of natural rubber/epoxidized natural rubber/nanosilica nanocomposites and their physical characteristics. Macromol Res 23(3):284–290. https://doi.org/10.1007/s13233-015-3040-2

    CAS  Article  Google Scholar 

  37. 37.

    Gent AN, Pulford CTR (1983) Mechanisms of rubber abrasion. J Appl Polym Sci 28(3):943–960. https://doi.org/10.1002/app.1983.070280304

    CAS  Article  Google Scholar 

  38. 38.

    Zhang C, Tang Z, Guo B, Zhang L (2018) Significantly improved rubber-silica interface via subtly controlling surface chemistry of silica. Compos Sci Technol 156:70–77. https://doi.org/10.1016/j.compscitech.2017.12.020

    CAS  Article  Google Scholar 

  39. 39.

    Kong L, Li F, Wang F, Miao Y, Huang X, Zhu H, Lu Y (2018) In situ assembly of SiO2 nanodots/layered double hydroxide nanocomposite for the reinforcement of solution-polymerized butadiene styrene rubber/butadiene rubber. Compos Sci Technol 158:9–18. https://doi.org/10.1016/j.compscitech.2018.01.036

    CAS  Article  Google Scholar 

  40. 40.

    Cao X, Xu C, Liu Y, Chen Y (2013) Preparation and properties of carboxylated styrene-butadiene rubber/cellulose nanocrystals composites. Carbohydr Polym 92(1):69–76. https://doi.org/10.1016/j.carbpol.2012.09.054

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Wang, J., Wu, J. et al. Preparation of high-performance natural rubber/carbon black/molybdenum disulfide composite by using the premixture of epoxidized natural rubber and cysteine-modified molybdenum disulfide. Polym. Bull. 78, 1213–1230 (2021). https://doi.org/10.1007/s00289-020-03157-9

Download citation

Keywords

  • Natural rubber
  • Molybdenum disulfide
  • Abrasion resistance
  • Dispersion and interaction