Synthesis and characterization of ZnO NPs-doped PMMA-BDK-MR polymer-coated thin films with UV curing for optical data storage applications

Abstract

Hybrid material of poly-methyle-methacrylate (PMMA)-benzyl-dimethyl-ketal-azo dye methyl red (MR) thin film composites doped by various concentrations of ZnO NPs have been dip coated on glass substrates. The existence of azo dye (MR) in the composite was intentional to give the solution the desired pH level and to induce the cis ↔ trans cycles through illumination thermal relaxation. The optical and structural properties of the as-prepared thin films are investigated in relevance to ZnO NPs contents and the period of UV light illumination (short- and long-wavelength UV light). We found that the PMMA-BDK-MR doped by 1% ZnO NPs could be successfully used in optical data storage by implementing this composite in the WRITE/READ/ERASE cycle repeatedly. Specifically, it was found that the absorption band of the PMMA-BDK-MR doped by 1% ZnO NPs thin film lies between 350 and 600 nm upon illumination with 366 nm UV light for 10 s. Thermogravimetric analysis (TGA) was used to investigate the thermal stability of PMMA-BDK-MR/ZnO NPs. The TGA results are presented and interpreted. Furthermore, we investigated annealed poly-methyle-methacrylate-benzyl-dimethyl-ketal-methyl-red (PMMA-BDK-MR) doped by 1% ZnO NPs thin films. The transcis cycle has been repeated sequentially to confirm the hysteresis behavior for possible data READ/WRITE or ERASE memory applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. 1.

    Lü N, Lü X, Jin X, Lü C (2007) Preparation and characterization of UV-curable ZnO/polymer nanocomposite films. Polym Int 56:138–143

    Google Scholar 

  2. 2.

    Innocenzi P, Esposto M, Maddalena A (2001) Mechanical properties of 3-glycidoxypropyltrimethoxysilane based hybrid organic-inorganic materials. J Sol–Gel Sci Technol 20:293–301

    CAS  Google Scholar 

  3. 3.

    Lü C, Cui Z, Guan C, Guan J, Yang B, Shen J (2003) Research on preparation, structure and properties of TiO2/polythiourethane hybrid optical films with high refractive index. Macromol Mater Eng 288:717–723

    Google Scholar 

  4. 4.

    Hsu SC, Whang WT, Hung CH, Chiang PC, Hsiao YN (2005) Effect of the polyimide structure and ZnO concentration on the morphology and characteristics of polyimide/ZnO nanohybrid films. Macromol Chem Phys 206:291–298

    CAS  Google Scholar 

  5. 5.

    Grasset F, Saito N, Li D, Park D, Sakaguchi I, Ohashi N et al (2003) Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane. J Alloy Compd 360:298–311

    CAS  Google Scholar 

  6. 6.

    Novak BM (1993) Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Adv Mater 5:422–433

    CAS  Google Scholar 

  7. 7.

    Guo B, Liu Z, Hong L, Jiang H (2005) Sol gel derived photocatalytic porous TiO2 thin films. Surf Coat Technol 198:24–29

    CAS  Google Scholar 

  8. 8.

    Nimittrakoolchai O-U, Supothina S (2008) Deposition of organic-based superhydrophobic films for anti-adhesion and self-cleaning applications. J Eur Ceram Soc 28:947–952

    CAS  Google Scholar 

  9. 9.

    Yamashita H, Nishio S, Katayama I, Nishiyama N, Fujii H (2006) Photo-induced super-hydrophilic property and photocatalysis on transparent Ti-containing mesoporous silica thin films. Catal Today 111:254–258

    CAS  Google Scholar 

  10. 10.

    Messori M, Toselli M, Pilati F, Fabbri E, Fabbri P, Busoli S et al (2003) Flame retarding poly (methyl methacrylate) with nanostructured organic–inorganic hybrids coatings. Polymer 44:4463–4470

    CAS  Google Scholar 

  11. 11.

    Zhu LJ, Wang JJ, Guo L, Shen J (2011) Study on the preparation and properties of the PVA/SiO2 hybrid coating on BOPP film via sol–gel process. In: Advanced materials research, pp 1956–1959

  12. 12.

    Ge J, Zeng X, Tao X, Li X, Shen Z, Yun J et al (2010) Preparation and characterization of PS-PMMA/ZnO nanocomposite films with novel properties of high transparency and UV-shielding capacity. J Appl Polym Sci 118:1507–1512

    CAS  Google Scholar 

  13. 13.

    Khrenov V, Klapper M, Koch M, Müllen K (2005) Surface functionalized ZnO particles designed for the use in transparent nanocomposites. Macromol Chem Phys 206:95–101

    CAS  Google Scholar 

  14. 14.

    Levine KL, Iroh JO, Kosel PB (2004) Synthesis and properties of the nanocomposite of zink oxide and poly (amic acid). Appl Surf Sci 230:24–33

    CAS  Google Scholar 

  15. 15.

    Hung C-H, Whang W-T (2005) Effect of surface stabilization of nanoparticles on luminescent characteristics in ZnO/poly (hydroxyethyl methacrylate) nanohybrid films. J Mater Chem 15:267–274

    CAS  Google Scholar 

  16. 16.

    Abdullah M, Morimoto T, Okuyama K (2003) Generating Blue and Red Luminescence from ZnO/Poly (ethylene glycol) nanocomposites prepared using an in-situ method. Adv Func Mater 13:800–804

    CAS  Google Scholar 

  17. 17.

    Xiong H-M, Zhao X, Chen J-S (2001) New polymer–inorganic nanocomposites: PEO–ZnO and PEO–ZnO–LiClO4 films. J Phys Chem B 105:10169–10174

    CAS  Google Scholar 

  18. 18.

    Zheng J, Siegel RW, Toney CG (2003) Polymer crystalline structure and morphology changes in nylon-6/ZnO nanocomposites. J Polym Sci Part B Polym Phys 41:1033–1050

    CAS  Google Scholar 

  19. 19.

    Liu B, Wang M, He Y, Wang X (2006) Duplication of photoinduced azo polymer surface-relief gratings through a soft lithographic approach. Langmuir 22:7405–7410

    CAS  PubMed  Google Scholar 

  20. 20.

    Kawata S, Kawata Y (2000) Three-dimensional optical data storage using photochromic materials. Chem Rev 100:1777–1788

    CAS  PubMed  Google Scholar 

  21. 21.

    Natansohn A, Rochon P (1999) Photoinduced motions in azobenzene-based amorphous polymers: possible photonic devices. Adv Mater 11:1387–1391

    CAS  Google Scholar 

  22. 22.

    Yager KG, Barrett CJ (2006) Photomechanical surface patterning in azo-polymer materials. Macromolecules 39:9320–9326

    CAS  Google Scholar 

  23. 23.

    Czaplicki R, Krupka O, Essaidi Z, El-Ghayoury A, Kajzar F, Grote J et al (2007) Grating inscription in picosecond regime in thin films of functionalized DNA. Opt Express 15:15268–15273

    CAS  PubMed  Google Scholar 

  24. 24.

    Schab-Balcerzak E, Flakus H, Jarczyk-Jedryka A, Konieczkowska J, Siwy M, Bijak K et al (2015) Photochromic supramolecular azopolyimides based on hydrogen bonds. Opt Mater 47:501–511

    CAS  Google Scholar 

  25. 25.

    Derkowska-Zielinska B, Skowronski L, Kozlowski T, Smokal V, Kysil A, Biitseva A et al (2015) Influence of peripheral substituents on the optical properties of heterocyclic azo dyes. Opt Mater 49:325–329

    CAS  Google Scholar 

  26. 26.

    Stoilova A, Georgiev A, Nedelchev L, Nazarova D, Dimov D (2019) Structure-property relationship and photoinduced birefringence of the azo and azo-azomethine dyes thin films in PMMA matrix. Opt Mater 87:16–23

    CAS  Google Scholar 

  27. 27.

    Kozanecka-Szmigiel A, Switkowski K, Schab-Balcerzak E, Szmigiel D (2015) Photoinduced birefringence of azobenzene polymer at blue excitation wavelengths. Appl Phys B 119:227–231

    CAS  Google Scholar 

  28. 28.

    Merino E, Ribagorda M (2012) Control over molecular motion using the cis–trans photoisomerization of the azo group. Beilstein J Org Chem 8:1071–1090

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Yager KG, Barrett CJ (2009) Azobenzene polymers for photonic applications. Smart Light Responsive Mater 1:1–46

    Google Scholar 

  30. 30.

    Derkowska-Zielinska B, Skowronski L, Biitseva A, Grabowski A, Naparty M, Smokal V et al (2017) Optical characterization of heterocyclic azo dyes containing polymers thin films. Appl Surf Sci 421:361–366

    CAS  Google Scholar 

  31. 31.

    Combellas C, Kajzar F, Mathey G, Petit MA, Thiébault A (2000) Zwitterionic polymers for nonlinear optics. Chem Phys 252:165–177

    CAS  Google Scholar 

  32. 32.

    Large M, Kajzar F, Raimond P (1998) Modulation of second harmonic generation in photochromic materials by the application of electric fields and low intensity light. Appl Phys Lett 73:3635–3637

    CAS  Google Scholar 

  33. 33.

    Luo Y, She W, Wu S, Zeng F, Yao S (2005) Improvement of all-optical switching effect based on azobenzene-containing polymer films. Appl Phys B 80:77–80

    CAS  Google Scholar 

  34. 34.

    Mohajerani E, Heydari E (2007) Trans-cis-trans photoisomerization as an all-optical switching in azo-dye-doped polymer waveguide. In: Light-emitting diode materials and devices II, p 682818

  35. 35.

    Yan D, Yan-Hua L, Pei W, Yong-Hua L, Hai M, Qi-Jing Z (2007) All-optical switching based on azo polymer material. Chin Phys Lett 24:2849

    Google Scholar 

  36. 36.

    Henari FZ, Cassidy S (2012) Non-linear optical properties and all optical switching of Congo red in solution. Optik 123:711–714

    CAS  Google Scholar 

  37. 37.

    Zhao J, Dong F, Qu H, Ye P, Fu X, Qiu L et al (1995) Dynamic studies on laser-induced gratings in azobenzene-doped polymer film. Appl Phys B 61:377–384

    Google Scholar 

  38. 38.

    Dumont M (1993) Photopolymers and applications in holography, optical data storage, optical sensors, and interconnects, In: Proc. SPIE, p 2

  39. 39.

    Lee GJ, Kim D, Lee M (1995) Photophysical properties and photoisomerization processes of Methyl Red embedded in rigid polymer. Appl Opt 34:138–143

    CAS  PubMed  Google Scholar 

  40. 40.

    Shi Y, Steier WH, Yu L, Chen M, Dalton LR (1991) Large stable photoinduced refractive index change in a nonlinear optical polyester polymer with disperse red side groups. Appl Phys Lett 58:1131–1133

    CAS  Google Scholar 

  41. 41.

    Sekkat Z, Morichere D, Dumont M, Loucif-Saïbi R, Delaire J (1992) Photoisomerization of azobenzene derivatives in polymeric thin films. J Appl Phys 71:1543–1545

    CAS  Google Scholar 

  42. 42.

    Coelho PJ, Sousa CM, Castro MCR, Fonseca AMC, Raposo MMM (2013) Fast thermal cis–trans isomerization of heterocyclic azo dyes in PMMA polymers. Opt Mater 35:1167–1172

    CAS  Google Scholar 

  43. 43.

    Feringa BL, Jager WF, de Lange B (1993) Organic materials for reversible optical data storage. Tetrahedron 49:8267–8310

    CAS  Google Scholar 

  44. 44.

    Ahmad A, Omari, A (2015) The UV and laser aging for PMMA/BDK/Azo-dye polymer blend cured by UV light beams. In: IOP conference series: materials science and engineering, p 012024

  45. 45.

    Blasco E, Piñol M, Berges C, Sánchez-Somolinos C, Oriol L (2019) Smart polymers for optical data storage. In: Aguilar MR, Roman JS (eds) Smart polymers and their applications. Elsevier, pp 567–606

  46. 46.

    Al Attar HA, Taqatqa O (2003) A new highly photorefractive polymer composite for optical data storage application. J Opt A Pure Appl Opt 5:S487

    Google Scholar 

  47. 47.

    Webb R, Langford S, Dickinson J, Lippert T (1998) Sensitization of PMMA to laser ablation at 308 nm. Appl Surf Sci 127:815–820

    Google Scholar 

  48. 48.

    Yang Z, Ji S, Gao W, Zhang C, Ren L, Tjiu WW et al (2013) Magnetic nanomaterial derived from graphene oxide/layered double hydroxide hybrid for efficient removal of methyl orange from aqueous solution. J Colloid Interface Sci 408:25–32

    CAS  PubMed  Google Scholar 

  49. 49.

    Ginsburg JC (2004) The right to claim authorship in US copyright and trademarks law. Houst Law Rev 41:263

    Google Scholar 

  50. 50.

    Duarte F, Maldonado-Hódar F, Pérez-Cadenas A, Madeira LM (2009) Fenton-like degradation of azo-dye Orange II catalyzed by transition metals on carbon aerogels. Appl Catal B 85:139–147

    CAS  Google Scholar 

  51. 51.

    Ahmad A, Alsaad A, Al-Bataineh Q, Al-Naafa M (2018) Optical and structural investigations of dip-synthesized boron-doped ZnO-seeded platforms for ZnO nanostructures. Appl Phys A 124:458

    Google Scholar 

  52. 52.

    Ahmad A, Alsaad A, Al-Bataineh Q, Bani-Salameh A, Al-Khateeb H, Al-Naafa M (2017) Optical and structural characterization of dip synthesized Al-B Co-doped ZnO seeded platforms for ZnO nanostructures. Jordan J Phys 10:2017

    Google Scholar 

  53. 53.

    Jin M, Yang QX, Lu R, Pan LY, Xue PC, Zhao Y (2003) Synthesis and photo-induced birefringence of pyrazoline substituted azo-dyes in PMMA films. Opt Mater 24:445–452

    CAS  Google Scholar 

  54. 54.

    Al-Bataineh QM, Alsaad A, Ahmad A, Al-Sawalmih A (2019) Structural, electronic and optical characterization of ZnO thin film-seeded platforms for ZnO nanostructures: sol–gel method versus ab initio calculations. J Electron Mater 48:5028–5038

    CAS  Google Scholar 

  55. 55.

    Wang G, Hou L, Gan F (1999) Optical storage properties of novel azo dye-in-polymer (PMMA) thin films. Phys Status Solidi (a) 174:269–275

    CAS  Google Scholar 

  56. 56.

    Wu P-C, Hou C-T, Hsiao Y-C, Lee W (2014) Influence of methyl red as a dopant on the electrical properties and device performance of liquid crystals. Opt Express 22:31347–31355

    CAS  PubMed  Google Scholar 

  57. 57.

    Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92:1324

    CAS  Google Scholar 

  58. 58.

    El-Hagary M, Emam-Ismail M, Shaaban E, El-Taher A (2012) Effect of γ-irradiation exposure on optical properties of chalcogenide glasses Se70S30–xSbx thin films. Radiat Phys Chem 81:1572–1577

    CAS  Google Scholar 

  59. 59.

    Tauc J (2012) Amorphous and liquid semiconductors. Springer, Berlin

    Google Scholar 

  60. 60.

    Bhattacharyya D, Chaudhuri S, Pal A (1992) Bandgap and optical transitions in thin films from reflectance measurements. Vacuum 43:313–316

    CAS  Google Scholar 

  61. 61.

    Shahane G, More B, Rotti C, Deshmukh L (1997) Studies on chemically deposited CdS1–xSex mixed thin films. Mater Chem Phys 47:263–267

    CAS  Google Scholar 

  62. 62.

    Hassanien AS, Akl AA (2015) Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50–xSex thin films. J Alloy Compd 648:280–290

    CAS  Google Scholar 

  63. 63.

    Jin ZC, Hamberg I, Granqvist C (1988) Optical properties of sputter-deposited ZnO: Al thin films. J Appl Phys 64:5117–5131

    CAS  Google Scholar 

  64. 64.

    Chamroukhi H, Hamed ZB, Telfah A, Bassou M, Zeinert A, Hergenröder R et al (2018) Optical and structural properties enhancement of hybrid nanocomposites thin films based on polyaniline doped with Zinc Oxide embedded in bimodal mesoporous silica (ZnO@ SiOX) nanoparticles. Opt Mater 84:703–713

    CAS  Google Scholar 

  65. 65.

    Cao M-S, Song W-L, Hou Z-L, Wen B, Yuan J (2010) The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48:788–796

    CAS  Google Scholar 

  66. 66.

    Pesika NS, Hu Z, Stebe KJ, Searson PC (2002) Quenching of growth of ZnO nanoparticles by adsorption of octanethiol. J Phys Chem B 106:6985–6990

    CAS  Google Scholar 

  67. 67.

    Rawat A, Soni U, Malik RS, Pandey SC (2018) Facile synthesis of UV blocking nano-sized Zinc Oxide and Polymethyl-methacrylate polymer nanocomposite coating material. Nano Struct Nano Objects 16:371–380

    CAS  Google Scholar 

  68. 68.

    Quadri TW, Olasunkanmi LO, Fayemi OE, Solomon MM, Ebenso EE (2017) Zinc oxide nanocomposites of selected polymers: synthesis, characterization, and corrosion inhibition studies on mild steel in HCl solution. ACS Omega 2:8421–8437

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge Jordan University of Science and Technology (JUST) in Jordan for technical and financial support received from the Deanship of Scientific Research (scientific project #20160166).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. M. Alsaad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A.A., Alsaad, A.M., Al-Bataineh, Q.M. et al. Synthesis and characterization of ZnO NPs-doped PMMA-BDK-MR polymer-coated thin films with UV curing for optical data storage applications. Polym. Bull. 78, 1189–1211 (2021). https://doi.org/10.1007/s00289-020-03155-x

Download citation

Keywords

  • Thin Films
  • Hybrid materials
  • Optical data storage
  • ZnO nanoparticles (ZnO NPs)
  • Poly-methyle-methacrylate (PMMA)
  • Benzyl-dimethyl-ketal (BDK)
  • Azo dye methyl red (MR)
  • UV curing