Cassava starch: structural modification for development of a bio-adsorber for aqueous pollutants. Characterization and adsorption studies on methylene blue

Abstract

A potential bio-adsorber of contaminants in aqueous medium was developed in this work through modified starches using organic acids. Methylene blue (MB) was used as example of a pollutant agent. For this purpose, firstly three types of modified starches were prepared using malonic, glutaric, and valeric acids in aqueous solution at different concentrations. The characterization of modified starches showed concordance with the chemical structure of the acid incorporated in starch. Pseudo-second-order model explains the rate of adsorption of the cationic dye MB. The adsorption of MB was carried out through intraparticle diffusion mechanism mainly. Physical and chemical interactions between modified starch and MB are involved.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

St:

Starch

MA-St:

Malonate starch

GA-St:

Glutarate starch

VA-St:

Valerate starch

MB:

Methylene blue

References

  1. 1.

    Niedergall K, Bach M, Hirth T, Tovar G, Schiestel T (2014) Removal of micropollutants from water by nanocomposite membrane adsorbers. Sep Purif Technol 131:60–68. https://doi.org/10.1016/j.seppur.2014.04.032

    CAS  Article  Google Scholar 

  2. 2.

    Amode J, Santos J, Alam Z, Mirza A, Mei C (2016) Adsorption of methylene blue from aqueous solution using untreated and treated (Metroxylon spp.) waste adsorbent: equilibrium and kinetics studies. Int J Ind Chem 7:333–345. https://doi.org/10.1007/s40090-016-0085-9

    CAS  Article  Google Scholar 

  3. 3.

    Oladipo A, Ifebajo A (2018) Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: two-stage adsorber analysis. J Environ Manag 209:9–16. https://doi.org/10.1016/j.jenvman.2017.12.030

    CAS  Article  Google Scholar 

  4. 4.

    Sophia C, Lima E (2018) Removal of emerging contaminants from the environment by adsorption. Ecotoxicol Environ Saf 150:1–17. https://doi.org/10.1016/j.ecoenv.2017.12.026

    CAS  Article  Google Scholar 

  5. 5.

    Baig N, Ihsanullah SM, Saleh T (2019) Graphene-based adsorbents for the removal of toxic organic pollutants: a review. J Environ Manag 244:370–382. https://doi.org/10.1016/j.jenvman.2019.05.047

    CAS  Article  Google Scholar 

  6. 6.

    Ayangbenro A, Babalola O (2017) Review a new strategy for heavy metal polluted environments: a review of microbial bio-sorbents. Int J Environ Res Public Health 14:94. https://doi.org/10.3390/ijerph14010094

    CAS  Article  PubMed Central  Google Scholar 

  7. 7.

    Bhattacharyya A, Banerjee B, Ghorai S, Rana D, Roy I, Sarkar G, Saha N, De S, Ghosh T, Sadhukhan S, Chattopadhy D (2018) Development of an auto-phase separable and reusable graphene oxidepotato starch based cross-linked bio-composite adsorbent for removal of methylene blue dye. Int J Biol Macromol 116:1037–1048. https://doi.org/10.1016/j.ijbiomac.2018.05.069

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Aljeboree A, Alshirifi A, Alkaim A (2017) Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem 10:S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020

    CAS  Article  Google Scholar 

  9. 9.

    Bello O, Adegoke K, Akinyunni O (2017) Preparation and characterization of a novel adsorbent from Moringa oleifera leaf. Appl Water Sci 7:1295–1305. https://doi.org/10.1007/s13201-015-0345-4

    CAS  Article  Google Scholar 

  10. 10.

    Aichour A, Zaghouane-Boudiaf H (2019) Highly brilliant green removal from wastewater by mesoporous adsorbents: kinetics, thermodynamics and equilibrium isotherm studies. Microchem J 146:1255–1262. https://doi.org/10.1016/j.microc.2019.02.040

    CAS  Article  Google Scholar 

  11. 11.

    Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, van der Ploeg M, van de Zee S, Ritsema C (2015) Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res 3:57–65. https://doi.org/10.1016/j.iswcr.2015.03.002

    Article  Google Scholar 

  12. 12.

    Tang P, Sun Q, Zhao L, Tang Y, Liu Y, Pu H, Gan N, Liu Y, Li H (2019) A simple and green method to construct cyclodextrin polymer for the effective and simultaneous estrogen pollutant and metal removal. Chem Eng J 366:598–607. https://doi.org/10.1016/j.cej.2019.02.117

    CAS  Article  Google Scholar 

  13. 13.

    Ali I, Basheer A, Mbianda X, Burakov A, Galunin E, Burakova I, Mkrtchyan E, Tkachev A, Grachev V (2019) Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ Int 127:160–180. https://doi.org/10.1016/j.envint.2019.03.029

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Hu F, Wang Z, Zhu B, Zhu L, Xu Y (2018) Poly (N-vinyl imidazole) gel-filled membrane adsorbers for highly efficient removal of dyes from water. J Chromatogr A 1563:198–206. https://doi.org/10.1016/j.chroma.2018.05.075

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Arsh A (2018) New generation nano-adsorbents for the removal of emerging contaminants in water. J Mol Liq 261:583–593

    Article  Google Scholar 

  16. 16.

    Kennedy K, Maseka K, Mbulo M (2018) Selected adsorbents for removal of contaminants from wastewater: towards engineering clay minerals. Open J Appl Sci 8:355–369. https://doi.org/10.4236/ojapps.2018.88027

    CAS  Article  Google Scholar 

  17. 17.

    Anjum H, Johari K, Arunagiri A, Gnanasundaram N, Thanabalan M (2019) Surface modification and characterization of carbonaceous adsorbents for the efficient removal of oil pollutants. J Hazard Mater 379:127603. https://doi.org/10.1016/j.jhazmat.2019.05.066

    CAS  Article  Google Scholar 

  18. 18.

    Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Technol 9:10–40. https://doi.org/10.1016/j.susmat.2016.06.002

    CAS  Article  Google Scholar 

  19. 19.

    Benhachem F, Attar T, Bouabdallah F (2019) Kinetic study of adsorption methylene blue dye from aqueous solutions using activated carbon from starch. Che Rev Lett 2:33–39. https://doi.org/10.1016/j.cej.2005.12.012

    CAS  Article  Google Scholar 

  20. 20.

    Bello M, Raman A (2018) Adsorption and oxidation techniques to remove organic pollutants from water. In: Crini G, Lichtfouse E (eds) Green adsorbents for pollutant removal environmental chemistry for a sustainable world, vol 18. Springer, Cham

    Google Scholar 

  21. 21.

    Khulbe KC, Matsuura T (2018) Removal of heavy metals and pollutants by membrane adsorption techniques Appl Water Sci 8:19. https://doi.org/10.1007/s13201-018-0661-6

    CAS  Article  Google Scholar 

  22. 22.

    Sivashankar R, Sathya A, Vasantharaj K, Sivasubramanian V (2014) Magnetic composite an environmental super adsorbent for dye sequestration. Environ Nanotechnol Monit Manag 1–2:36–49. https://doi.org/10.1016/j.enmm.2014.06.001

    Article  Google Scholar 

  23. 23.

    Sadegh H, Ali GAM, Gupta VK, Hamdy A, Shahryari-ghoshekandi R, Nadagouda M, Sillanpaa M, Megiel E (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostruct Chem 7:1–14. https://doi.org/10.1007/s40097-017-0219-4

    CAS  Article  Google Scholar 

  24. 24.

    Lawal I, Klink M, Ndungu P, Moodley B (2019) Brief bibliometric analysis of “ionic liquid” applications and its review as a substitute for common adsorbent modifier for the adsorption of organic pollutants. Environ Res 175:34–51. https://doi.org/10.1016/j.envres.2019.05.005

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Naidu M, Sean P, Jye W, Fauzi A (2019) The roles of nanomaterials in conventional and emerging technologies for heavy metal removal: a state of the art review. Nanomaterials 9:625. https://doi.org/10.3390/nano9040625

    CAS  Article  Google Scholar 

  26. 26.

    Adeniyi A, Ighalo J (2019) Biosorption of pollutants by plant leaves: an empirical review. J Environ Chem Eng 7:103100. https://doi.org/10.1016/j.jece.2019.103100

    CAS  Article  Google Scholar 

  27. 27.

    El-Azazy M, Kalla R, Issa A, Al-Sulaiti M, El-Shafie A, Shomar B, Al-Saad K (2019) Pomegranate peels as versatile adsorbents for water purification: application of Box–Behnken design as a methodological optimization approach. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.13223

    Article  Google Scholar 

  28. 28.

    Haq F, Yu H, Wang L, Teng L, Haroon M, Khan R, Mehmood S, Amin B, Ullah R, Khan A, Nazir A (2019) Advances in chemical modifications of starches and their applications. Carbohydr Res 476:12–35. https://doi.org/10.1016/j.carres.2019.02.007

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Cheng R, Ou S (2011) Application of modified starches in wastewater treatment. In: Méndez-Vilas A, Solano A (eds) Polymer science: research advances, practical applications and educational aspects. ISBN-10: 8494213482

  30. 30.

    Schwantes D, Goncalves A, Miola A, Ferreira G, Goncalves Dos Santos M, Volz Lismann E (2015) Removal of Cu (II) and Zn (II) from water with natural adsorbents from cassava agroindustry residues. Act Scientiarum Technol 37:409–417. https://doi.org/10.4025/actascitechnol.v37i3.26809

    CAS  Article  Google Scholar 

  31. 31.

    Zhu F (2019) Recent advances in modifications and applications of sago starch. Food Hydrocoll 96:412–423. https://doi.org/10.1016/j.foodhyd.2019.05.035

    CAS  Article  Google Scholar 

  32. 32.

    Kaveh Z, Azadmard-Damirchi S, Yousefi G, Hosseini SMH (2019) Effect of different alcoholic-alkaline treatments on physical and mucoadhesive properties of tapioca starch. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.10.230

    Article  PubMed  Google Scholar 

  33. 33.

    Qian SY, Tang MQ, Gao Q, Wang XW, Zhang JW, Tanokura M, Xue YL (2019) Effects of different modification methods on the physicochemical and rheological properties of Chinese yam (Dioscorea opposita Thunb.) starch. LWT 116:108513–108521. https://doi.org/10.1016/j.lwt.2019.108513

    CAS  Article  Google Scholar 

  34. 34.

    Haroon M, Wang L, Yu H, Abbasi N, Abdin Z, Saleem M, Khan R, Ullah R, Chen Q, Wu J (2016) Chemical modification of starch and its application as an adsorbent material. Royal Soc Chem Adv 6:78264–78285. https://doi.org/10.1039/C6RA16795K

    CAS  Article  Google Scholar 

  35. 35.

    Charles J, Bradu C, Morin-Crini N, Sancey B, Winterton P, Torri G, Badot P-M, Crini G (2016) Pollutant removal from industrial discharge water using individual and combined effects of adsorption and ion-exchange processes: Chemical abatement. J Saudi Chem Soc 20:185–194. https://doi.org/10.1016/j.jscs.2013.03.007

    CAS  Article  Google Scholar 

  36. 36.

    Bai W, Fan L, Zhou Y, Zhang Y, Shi J, Lv G, Wu Y, Liu Q, Song J (2017) Removal of Cd2+ ions from aqueous solution using cassava starch-based superabsorbent polymers. J Appl Polym Sci 44758:1–12. https://doi.org/10.1002/app.44758

    CAS  Article  Google Scholar 

  37. 37.

    Hosseinzadeh H, Ramin S (2018) Fabrication of starch-graft-poly(acrylamide)/graphene oxide/hydroxyapatite nanocomposite hydrogel adsorbent for removal of malachite green dye from aqueous solution. Int J Biol Macromol 106:101–115. https://doi.org/10.1016/j.ijbiomac.2017.07.182

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Takeda C, Takeda Y, Hizukuri S (1893) Physicochemical properties of lily starch. Cereal Chem 60:212–216

    Google Scholar 

  39. 39.

    Kweon DK, Choi JKEK, Kim S, Lim T (2001) Adsorption of divalent metal ions by succinylated and oxidized corn starches. Carbohydr Polym 46:171–177. https://doi.org/10.1016/S0144-8617(00)00300-3

    CAS  Article  Google Scholar 

  40. 40.

    Wurburg OB (1964) Acetylation. In: Whistler RL, Smith RJ, Wolfram ML (eds) Methods in carbohydrate chemistry, vol IV. Academic Press, New York, pp 240–241

    Google Scholar 

  41. 41.

    Leach HW, McCowenm LD, Scoch TJ (1959) Structure of starch granule. Swelling and solubility patterns of various starches. Cereal Chem 36:534–544

    CAS  Google Scholar 

  42. 42.

    Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens, Handlingar. Band 24:1–39

  43. 43.

    Ho YS, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Protect 76:332–340. https://doi.org/10.1205/095758298529696

    CAS  Article  Google Scholar 

  44. 44.

    Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–60

    Google Scholar 

  45. 45.

    Altuna L, Herrera ML, Foresti ML (2018) Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature. Food Hydrocoll 80:97–110. https://doi.org/10.1016/j.foodhyd.2018.01.032

    CAS  Article  Google Scholar 

  46. 46.

    Kumoro C, Retnowati DS, Budiyati CS, Manurung T, Siswanto. (2012) Water solubility, swelling and gelatinization properties of raw and ginger oil modified gadung (Dioscorea hispida dennst) flour. Res J Appl Sci Eng Technol 4:2854–2860

    Google Scholar 

  47. 47.

    Todica M, Nagy E, Niculaescu C, Stan O, Cioica N, Pop C (2016) XRD investigation of some thermal degraded starch based materials. J Spectrosc ID 9605312. https://doi.org/10.1155/2016/9605312

  48. 48.

    Sangian H, Telleng R, Aruan I, Mosey H, Tamintuan G (2018) The structural modification of cassava starch using a saline water pretreatment. Food Sci Technol 38:215–220. https://doi.org/10.1590/1678-457x.18517

    Article  Google Scholar 

  49. 49.

    Garrido L, Schnitzler E, Boff M, de Souza T, Mottin I (2014) Physicochemical properties of cassava starch oxidized by sodium hypochlorite. J Food Sci Technol 51:2640–2647. https://doi.org/10.1007/s13197-012-0794-9

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Okazaki M (2018) The structure and characteristics of sago starch. In: Ehara H, Toyoda Y, Johnson D (eds) Sago Palm. Springer, Singapore, pp 247–259

    Google Scholar 

  51. 51.

    Xu A, Guo K, Liu T, Bian X, Zhang L, Wei C (2018) Effects of different isolation media on structural and functional properties of starches from root tubers of purple, yellow and white sweet potatoes. Mol 23:2135–2152. https://doi.org/10.3390/molecules23092135

    CAS  Article  Google Scholar 

  52. 52.

    Abarca RL, Rodríguez F, Guarda A, Galotto MJ, Bruna J (2016) Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem 196:968–975. https://doi.org/10.1016/j.foodchem.2015.10.023

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Alvarado N, Romero J, Torres A, Lopez de Dicastillo C, Rojas A, Galotto MJ, Guarda A (2018) Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl alcohol)-cellulose nanocrystals nanofibers: development an active food packaging material. J Food Eng 217:1–10. https://doi.org/10.1016/j.jfoodeng.2017.08.008

    CAS  Article  Google Scholar 

  54. 54.

    Alvarado N, Fuentes I, Alegría L, Sandoval C, Kortaberıa G, Eceiza A, Gargallo L, Leiva A, Radic D (2015) Interactions in blends of dendronized polymeric nanocomposites with some common drugs. J Appl Polym Sci 132:42450–42459. https://doi.org/10.1002/app.42450

    CAS  Article  Google Scholar 

  55. 55.

    Kizil R, Irudayaraj J, Seetharaman K (2002) Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J Agric Food Chem 50:3912–3918. https://doi.org/10.1021/jf011652p

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Zhang B, Huang Q, Luo F, Fu X, Jiang H, Jane J (2011) Effects of octenylsuccinylation on the structure and properties of high-amylose maize starch. Carbohydr Polym 84:1276–1281. https://doi.org/10.1016/j.carbpol.2011.01.020

    CAS  Article  Google Scholar 

  57. 57.

    Lindeboom N, Chang PR, Tyler RT (2004) Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch/Stärke 56:89–99. https://doi.org/10.1002/star.200300218

    CAS  Article  Google Scholar 

  58. 58.

    Ayala G, Djabourov M, Amaral P (2016) Water desorption of cassava starch granules: A study based on thermogravimetric analysis of aqueous suspensions and humid powders. Carbohydr Polym 147:533–541. https://doi.org/10.1016/j.carbpol.2016.04.030

    CAS  Article  Google Scholar 

  59. 59.

    Lv Y, Zhang L, Li M, He X, Hao L, Dai Y (2019) Physicochemical properties and digestibility of potato starch treated by ball milling with tea polyphenols. Int J Biol Macromol 129:207–213. https://doi.org/10.1016/j.ijbiomac.2019.02.028

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Siyamak S, Laycock B, Luckman P (2019) Synthesis of starch graft-copolymers via reactive extrusion: process development and structural analysis. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115066

    Article  PubMed  Google Scholar 

  61. 61.

    Zhang K, Dai Y, Hou H, Li X, Dong H, Wang W, Zhang H (2019) Influences of grinding on structures and properties of mung bean starch and quality of acetylated starch. Food Chem 294:285–292. https://doi.org/10.1016/j.foodchem.2019.05.055

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Soto D, Urdaneta J, Pernía K, León O, Muñoz-Bonilla A, Fernandez-García M (2015) Removal of heavy metal ions in water by starch esters. Starch/Stärke 56:89–99. https://doi.org/10.1002/star.201500155

    CAS  Article  Google Scholar 

  63. 63.

    Broido A (1969) A simple, sensitive graphical method of treating thermogravimetric analysis data. J Polym Sci Part B: Polym Phys 7:1761–1773. https://doi.org/10.1002/pol.1969.160071012

    CAS  Article  Google Scholar 

  64. 64.

    Zohuriaan MJ, Shokrolahi F (2004) Thermal studies on natural and modified gums. Polym Test 23:575–579. https://doi.org/10.1016/j.polymertesting.2003.11.001

    CAS  Article  Google Scholar 

  65. 65.

    Zdanowicz M, Spychaj T, Lendzion-Bielun Z (2014) Crosslinked carboxymethyl starch: one step synthesis and sorption characteristics. Int J Biol Macromol 71:87–93. https://doi.org/10.1016/j.ijbiomac.2014.04.043

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Delval F, Crini G, Bertini S, Filiatre C, Torri G (2005) Preparation, characterization and sorption properties of crosslinked starch-based exchangers. Carbohydr Polym 60:67–75. https://doi.org/10.1016/j.carbpol.2004.11.025

    CAS  Article  Google Scholar 

  67. 67.

    Abdel-Halim ES (2013) Preparation of starch/poly(N, N-Diethylaminoethyl methacrylate) hydrogel and its use in dye removal from aqueous solutions. React Funct Polym 73:1531–1536. https://doi.org/10.1016/j.reactfunctpolym.2013.08.003

    CAS  Article  Google Scholar 

  68. 68.

    Xiang B, Fan W, Yi X, Wang Z, Gao F, Li Y, Gu H (2016) Dithiocarbamate-modified starch derivatives with high heavy metal adsorption performance. Carbohydr Polym 136:30–37. https://doi.org/10.1016/j.carbpol.2015.08.065

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Sumalinog DAG, Capareda SC, de Luna MDG (2018) Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes. J Environ Manag 210:255–262. https://doi.org/10.1016/j.jenvman.2018.01.010

    CAS  Article  Google Scholar 

  70. 70.

    Doğan M, Abak H, Alkan M (2009) Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters. J Hazard Mater 164:172–181. https://doi.org/10.1016/j.jhazmat.2008.07.155

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Zhang W, Zhang LY, Zhao XJ, Zhou Z (2016) Citrus pectin derived porous carbons as a superior adsorbent toward removal of methylene blue. J Solid State Chem 243:101–105. https://doi.org/10.1016/j.jssc.2016.08.014

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Financial support of Project USA 1555 of the University of Santiago de Chile. R. Abarca thanks to Laboratorio de Caracterización de Materiales, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nancy Alvarado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alvarado, N., Abarca, R.L., Urdaneta, J. et al. Cassava starch: structural modification for development of a bio-adsorber for aqueous pollutants. Characterization and adsorption studies on methylene blue. Polym. Bull. 78, 1087–1107 (2021). https://doi.org/10.1007/s00289-020-03149-9

Download citation

Keywords

  • Modified starch
  • Methylene blue
  • Organic acid
  • Adsorption
  • Contaminants