Effects of the polymer composite composition and amine-based additives on the performance of a polymer composite CO2 separation membrane


In this study, a CO2 separation membrane was prepared by blending polyvinyl alcohol (PVA) and a water-absorbing agent. The effects of the blend composition and the addition of amine-based additives on the separation performance were examined. Membrane preparation by blending PVA and two types of water-absorbing agents promoted the permeation of CO2 and He, while selectivity of CO2 relative to He was slightly decreased. The addition of amine-based additives to the membrane improved the pressure resistance when pressurized from 0.1 to 0.7 MPa at 60 °C, and therefore also improved the separation performance. Changing the combination of PVA and the two types of water-absorbing agents during the preparation of the membrane materials led to a further enhancement of the separation performance. Thus, in this study, a CO2 separation membrane with a high separation performance and a pressure resistance of up to 0.7 MPa at 60 °C under humidification was prepared.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications—a review. Energy 35:2610–2628. https://doi.org/10.1016/j.energy.2010.02.030

    CAS  Article  Google Scholar 

  2. 2.

    Pires JCM, Martins FG, Alvim-Ferraz MCM, Simões M (2011) Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89:1446–1460. https://doi.org/10.1016/j.cherd.2011.01.028

    CAS  Article  Google Scholar 

  3. 3.

    Mondal MK, Balsora HK, Varshney P (2012) Progress and trends in CO2 capture/separation technologies: a review. Energy 46:431–441. https://doi.org/10.1016/j.energy.2012.08.006

    CAS  Article  Google Scholar 

  4. 4.

    Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39(426):443. https://doi.org/10.1016/j.rser.2014.07.093

    CAS  Article  Google Scholar 

  5. 5.

    Cuéllar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 9:82–102. https://doi.org/10.1016/j.jcou.2014.12.001

    CAS  Article  Google Scholar 

  6. 6.

    Dai Z, Ansaloni L, Deng L (2016) Recent advances in multi-layer composite polymeric membranes for CO2 separation: a review. Green Energy Environ 1:102–128. https://doi.org/10.1016/j.gee.2016.08.001

    Article  Google Scholar 

  7. 7.

    Duan S, Taniguchi I, Kai T, Kazama S (2012) Poly(amidoamine) dendrimer/poly(vinyl alcohol) hybrid membranes for CO2 capture. J Membr Sci 423–424:107–112. https://doi.org/10.1016/j.memsci.2012.07.037

    CAS  Article  Google Scholar 

  8. 8.

    Park C-Y, Kim E-H, Kim JH, Lee YM, Kim J-H (2018) Novel semi-alicyclic polyimide membranes: synthesis, characterization, and gas separation properties. Polymer 151:325–333. https://doi.org/10.1016/j.polymer.2018.07.052

    CAS  Article  Google Scholar 

  9. 9.

    Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49. https://doi.org/10.1016/j.memsci.2005.12.062

    CAS  Article  Google Scholar 

  10. 10.

    Xiao Y, Low BT, Hosseini SS, Chung TS, Paul DR (2009) The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—a review. Progr Polym Sci 34:561–580. https://doi.org/10.1016/j.progpolymsci.2008.12.004

    CAS  Article  Google Scholar 

  11. 11.

    Brunetti A, Scura F, Barbieri G, Drioli E (2010) Membrane technologies for CO2 separation. J Membr Sci 359:115–125. https://doi.org/10.1016/j.memsci.2009.11.040

    CAS  Article  Google Scholar 

  12. 12.

    D’Alesssandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem 49:6058–6082. https://doi.org/10.1002/anie.201000431

    CAS  Article  Google Scholar 

  13. 13.

    Luis P, Gerven TV, Bruggen BVD (2012) Recent developments in membrane-based technologies for CO2 capture. Prog Energy Combust Sci 38:419–448. https://doi.org/10.1016/j.pecs.2012.01.004

    CAS  Article  Google Scholar 

  14. 14.

    Guerrero G, Venturi D, Peters T, Rival N, Denonville C, Simon C, Henriksen PP, Hägg M-B (2017) Influence of functionalized nanoparticles on the CO2/N2 separation properties of PVA-based gas separation membranes. Energy Procedia 114:627–635. https://doi.org/10.1016/j.egypro.2017.03.1205

    CAS  Article  Google Scholar 

  15. 15.

    Kim NU, Park BJ, Park MS, Park JT, Kim JH (2019) Semi-interpenetrating polymer network membranes based on a self-cross linkable comb copolymer for CO2 capture. Chem Eng J360:1468–1476. https://doi.org/10.1016/j.cej.2018.10.152

    CAS  Article  Google Scholar 

  16. 16.

    Nigiz FU (2019) Synthesis and characterization of graphene nanoplate-incorporated PVA mixed matrix membrane for improved separation of CO2. Polym Bull. https://doi.org/10.1007/s00289-019-02851-7

    Article  Google Scholar 

  17. 17.

    Kouketsu T, Duan S, Kai T, Kazama S, Yamada K (2007) PAMAM dendrimer composite membrane for CO2 separation: formation of a chitosan gutter layer. J Membr Sci 287:51–59. https://doi.org/10.1016/j.memsci.2006.10.014

    CAS  Article  Google Scholar 

  18. 18.

    Duan S, Kai T, Taniguchi I, Kazama S (2013) Development of poly(amidoamine) dendrimer/poly(vinyl alcohol) hybrid membranes for CO2 separation. Desalin Water Treat 51:5337–5342. https://doi.org/10.1080/19443994.2013.768797

    CAS  Article  Google Scholar 

  19. 19.

    Duan S, Kai T, Saito T, Yamazaki K, Ikeda K (2014) Effect of cross-linking on the mechanical and thermal properties of poly (amidoamine) dendrimer/poly (vinyl alcohol) hybrid membranes for CO2 separation. Membranes 4:200–209

    Article  Google Scholar 

  20. 20.

    Taniguchi I, Kai T, Duan S, Kazama S, Jinnai H (2015) A compatible cross linker for enhancement of CO2 capture of poly (amidoamine) dendrimer-containing polymeric membranes. J Membr Sci 475:175–183. https://doi.org/10.1016/j.memsci.2014.10.015

    CAS  Article  Google Scholar 

  21. 21.

    Kai T, Duan S, Ito F, Mikami S, Sato Y, Nakao S (2017) Development of CO2 molecular gate membranes for IGCC process with CO2 capture. Energy Procedia 114:613–620. https://doi.org/10.1016/j.egypro.2017.03.1203

    CAS  Article  Google Scholar 

  22. 22.

    Yegani R, Hirozawa H, Teramoto M, Himei H, Okada O, Takigawa T, Ohmura N, Matsumiya N, Matsuyama H (2007) Selective separation of CO2 by using novel facilitated transport membrane at elevated temperature and pressures. J Membr Sci 291:157–164

    CAS  Article  Google Scholar 

  23. 23.

    Uemoto T, Sugiura K, Okada O, Nonouchi T, Ito F, Akiyama K, Matsuda K (2013) Proposition of CO2 removable technology using membrane for hydrogen station. ECS Trans 51(1):259–264

    Article  Google Scholar 

  24. 24.

    Kim T-J, Vrålstad H, Sandru M, Hägg M-B (2013) The effect of pH on CO2-separation from post combustion gas by polyvinylamine based composite membrane. Energy Procedia 37:986–992. https://doi.org/10.1016/j.egypro.2013.05.194

    CAS  Article  Google Scholar 

  25. 25.

    Dai Z, Deng J, Ansaloni L, Janakiram S, Deng L (2019) Thin-film-composite hollow fiber membranes containing amino acid salts as mobile carriers for CO2 separation. J Membr Sci 578:61–68. https://doi.org/10.1016/j.memsci.2019.02.023

    CAS  Article  Google Scholar 

  26. 26.

    Ito F, Nishiyama Y, Duan S, Yamada H (2019) Development of high-performance polymer membranes for CO2 separation by combining functionalities of poly vinyl alcohol (PVA) and sodium polyacrylate (PAANa). J Polym Res 26:106. https://doi.org/10.1007/s10965-019-1769-6

    CAS  Article  Google Scholar 

  27. 27.

    Ito F, Nishiyama Y, Duan S, Yamada H (2019) Examination of selection and combination of water-absorbing agent to blend with polyvinyl Alcohol (PVA) in preparing CO2 separation membrane with high-performance. Macromol Res. https://doi.org/10.1007/s13233-020-8043-y

    Article  Google Scholar 

Download references


This work was supported by the Japan Society for the Promotion of Science (JSPS), KAKENHI Grant 17 JP17K00634.

Author information



Corresponding author

Correspondence to Fuminori Ito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ito, F., Nishiyama, Y., Duan, S. et al. Effects of the polymer composite composition and amine-based additives on the performance of a polymer composite CO2 separation membrane. Polym. Bull. 78, 513–528 (2021). https://doi.org/10.1007/s00289-020-03122-6

Download citation


  • Polyvinyl alcohol
  • Water-absorbing agent
  • Amine-based additives
  • Carbonate
  • CO2 separation membrane