A review featuring the fundamentals and advancements of polymer/CNT nanocomposite application in aerospace industry


Carbon nanotubes (CNTs) have enormous application in various fields such as sensors, aerospace, super capacitors and photovoltaic devices, etc., and they are extensively exploited for number of other energy and environmental applications nowadays. With the rapid development and evolution in the field of aerospace industry, the existing developed technologies do not have adequate potential to overpower the requirements and demands of the new era. Nanocomposites based on CNT have procured significant attention in recent years for their applications in aircrafts, military crafts, missile and spacecraft due to advanced properties such as thermal stability, chemical stability, huge surface area, etc. In this review, the fundamentals in the field on CNT nanocomposites with reference to nanoparticles and conducting polymers such as DGEBA, polyaniline, polythiophene and polypyrrole are discussed. The main objective of the review is to study the advancement in aerospace applications of polymer/CNT nanocomposites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Bagchi A, Nomura S (2006) On the effective thermal conductivity of carbon nanotube reinforced polymer composites. Compos Sci Technol 66(11–12):1703–1712

    CAS  Google Scholar 

  2. 2.

    Chang T-E et al (2006) Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite. Polymer 47(22):7740–7746

    CAS  Google Scholar 

  3. 3.

    Debelak B, Lafdi K (2007) Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45(9):1727–1734

    CAS  Google Scholar 

  4. 4.

    Khelifa I et al (2019) New poly (o-phenylenediamine)/modified-clay nanocomposites: a study on spectral, thermal, morphological and electrochemical characteristics. J Mol Struct 1178:327–332

    CAS  Google Scholar 

  5. 5.

    Rafique I et al (2016) Exploration of epoxy resins, hardening systems, and epoxy/carbon nanotube composite designed for high performance materials: a review. Polym Plast Technol Eng 55(3):312–333

    CAS  Google Scholar 

  6. 6.

    Kausar A, Rafique I, Muhammad B (2016) Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. Polym Plast Technol Eng 55(11):1167–1191

    CAS  Google Scholar 

  7. 7.

    Schnorr JM, Swager TM (2010) Emerging applications of carbon nanotubes. Chem Mater 23(3):646–657

    Google Scholar 

  8. 8.

    Saber Samandari S (2014) Elastic modulus measurement of polymer matrix nano-composites reinforced by platelet nano-clays. Int J Nano Dimens 5:273–278

    Google Scholar 

  9. 9.

    Usuki A et al (1993) Swelling behavior of montmorillonite cation exchanged for ω-amino acids by∊-caprolactam. J Mater Res 8(5):1174–1178

    CAS  Google Scholar 

  10. 10.

    Haque A et al (2002) s2-glass/vinyl ester polymer nanocomposites: manufacturing, structures, thermal and mechanical properties. In: 17th annual technical conference. American Society for Composites

  11. 11.

    Andrei G, Dima D, Andrei L (2006) Lightweight magnetic composites for aircraft applications. J Optoelectron Adv Mater 8(2):726

    CAS  Google Scholar 

  12. 12.

    Cheung KC, Gershenfeld N (2013) Reversibly assembled cellular composite materials. Science 341:1240889

    Google Scholar 

  13. 13.

    Bekyarova E et al (2007) Multiscale carbon nanotube–carbon fiber reinforcement for advanced epoxy composites. Langmuir 23(7):3970–3974

    CAS  PubMed  Google Scholar 

  14. 14.

    Koelle D (2003) Specific transportation costs to GEO—past, present and future. Acta Astronaut 53(4–10):797–803

    Google Scholar 

  15. 15.

    Thostenson E et al (2002) Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys 91(9):6034–6037

    CAS  Google Scholar 

  16. 16.

    Wu M et al (2000) Electromagnetic and microwave absorbing properties of iron fibre-epoxy resin composites. J Phys D Appl Phys 33(19):2398

    CAS  Google Scholar 

  17. 17.

    Périchaud M-G et al (2000) Reliability evaluation of adhesive bonded SMT components in industrial applications. Microelectron Reliab 40(7):1227–1234

    Google Scholar 

  18. 18.

    White KL, Sue HJ (2011) Electrical conductivity and fracture behavior of epoxy/polyamide-12/multiwalled carbon nanotube composites. Polym Eng Sci 51(11):2245–2253

    CAS  Google Scholar 

  19. 19.

    Park SJ, Kim HC (2001) Thermal stability and toughening of epoxy resin with polysulfone resin. J Polym Sci Part B Polym Phys 39(1):121–128

    CAS  Google Scholar 

  20. 20.

    Jin F-L, Ma C-J, Park S-J (2011) Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater Sci Eng A 528(29–30):8517–8522

    CAS  Google Scholar 

  21. 21.

    Bascom W et al (1975) The fracture of epoxy-and elastomer-modified epoxy polymers in bulk and as adhesives. J Appl Polym Sci 19(9):2545–2562

    CAS  Google Scholar 

  22. 22.

    Na T et al (2013) Composite membranes based on fully sulfonated poly (aryl ether ketone)/epoxy resin/different curing agents for direct methanol fuel cells. J Power Sources 230:290–297

    CAS  Google Scholar 

  23. 23.

    Jin F-L, Park S-J (2013) Recent advances in carbon-nanotube-based epoxy composites. Carbon Lett 14(1):1–13

    Google Scholar 

  24. 24.

    Anilkumar KR et al (2009) Effect of molybdenum trioxide (MoO3) on the electrical conductivity of polyaniline. Phys B 404(12–13):1664–1667

    CAS  Google Scholar 

  25. 25.

    Kryszewski M (1991) Heterogeneous conducting polymeric systems: dispersions, blends, crystalline conducting networks—an introductory presentation. Synth Met 45(3):289–296

    CAS  Google Scholar 

  26. 26.

    Daikh S et al (2018) Chemical polymerization, characterization and electrochemical studies of PANI/ZnO doped with hydrochloric acid and/or zinc chloride: differences between the synthesized nanocomposites. J Phys Chem Solids 121:78–84

    CAS  Google Scholar 

  27. 27.

    Le TH et al (2013) Electrosynthesis of polyaniline–mutilwalled carbon nanotube nanocomposite films in the presence of sodium dodecyl sulfate for glucose biosensing. Adv Nat Sci Nanosci Nanotechnol 4(2):025014

    Google Scholar 

  28. 28.

    Molapo KM et al (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7(12):11859–11875

    CAS  Google Scholar 

  29. 29.

    Hassan M et al (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8

    CAS  Google Scholar 

  30. 30.

    Yamani K et al (2019) Preparation of polypyrrole (PPy)-derived polymer/ZrO2 nanocomposites. J Therm Anal Calorim 135(4):2089–2100

    CAS  Google Scholar 

  31. 31.

    Proń A et al (1985) Mössbauer spectroscopy studies of selected conducting polypyrroles. J Chem Phys 83(11):5923–5927

    Google Scholar 

  32. 32.

    Armes SP (1987) Optimum reaction conditions for the polymerization of pyrrole by iron (III) chloride in aqueous solution. Synth Met 20(3):365–371

    CAS  Google Scholar 

  33. 33.

    Marks RS et al (2002) An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly (pyrrole–biotin). Anal Bioanal Chem 374(6):1056–1063

    CAS  PubMed  Google Scholar 

  34. 34.

    Neoh K et al (1997) Oxidation–reduction interactions between electroactive polymer thin films and Au(III) ions in acid solutions. Chem Mater 9(12):2906–2912

    CAS  Google Scholar 

  35. 35.

    Vernitskaya TYV, Efimov ON (1997) Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ Chem Rev 66(5):443–457

    Google Scholar 

  36. 36.

    Kang E et al (1988) ESCA analysis of polymer–acceptor interactions in chemically synthesized polypyrrole–halogen complexes. Polym J 20(5):399

    CAS  Google Scholar 

  37. 37.

    Rapi S, Bocchi V, Gardini GP (1988) Conducting polypyrrole by chemical synthesis in water. Synth Met 24(3):217–221

    CAS  Google Scholar 

  38. 38.

    Yamaura M, Hagiwara T, Iwata K (1988) Enhancement of electrical conductivity of polypyrrole film by stretching: counter ion effect. Synth Met 26(3):209–224

    CAS  Google Scholar 

  39. 39.

    Waugaman M et al (2003) Synthesis, characterization and biocompatibility studies of oligosiloxane modified polythiophenes. Eur Polym J 39(7):1405–1412

    CAS  Google Scholar 

  40. 40.

    Georger JH et al (1987) Helical and tubular microstructures formed by polymerizable phosphatidylcholines. J Am Chem Soc 109(20):6169–6175

    CAS  Google Scholar 

  41. 41.

    Shen Y, Wan M (1997) Soluble conductive polypyrrole synthesized by in situ doping with β-naphthalene sulphonic acid. J Polym Sci Part A Polym Chem 35(17):3689–3695

    CAS  Google Scholar 

  42. 42.

    Li S et al (2010) Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev 1(1):5214

    Google Scholar 

  43. 43.

    Jabeen S et al (2015) A review on polymeric nanocomposites of nanodiamond, carbon nanotube, and nanobifiller: structure, preparation and properties. Polym Plast Technol Eng 54(13):1379–1409

    CAS  Google Scholar 

  44. 44.

    Sadhasivam T et al (2017) Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: a review. Renew Sustain Energy Rev 72:523–534

    CAS  Google Scholar 

  45. 45.

    Bystrzejewski M et al (2010) Catalyst-free synthesis of onion-like carbon nanoparticles. New Carbon Mater 25(1):1–8

    CAS  Google Scholar 

  46. 46.

    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56

    CAS  Google Scholar 

  47. 47.

    Köhler AR et al (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8–9):927–937

    Google Scholar 

  48. 48.

    Hafner JH, Cheung CL, Lieber CM (1999) Growth of nanotubes for probe microscopy tips. Nature 398(6730):761

    CAS  Google Scholar 

  49. 49.

    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205

    CAS  Google Scholar 

  50. 50.

    Ibrahim KS (2013) Carbon nanotubes-properties and applications: a review. Carbon Lett 14(3):131–144

    Google Scholar 

  51. 51.

    Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Elsevier, Amsterdam

    Google Scholar 

  52. 52.

    Bachtold A et al (2001) Logic circuits with carbon nanotube transistors. Science 294(5545):1317–1320

    CAS  PubMed  Google Scholar 

  53. 53.

    Wunder S et al (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114(19):8814–8820

    CAS  Google Scholar 

  54. 54.

    Maier S et al (2003) Plasmonics—a route to nanoscale optical devices (advanced materials, 2001, 13, 1501). Adv Mater 15(7–8):562

    CAS  Google Scholar 

  55. 55.

    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors. Sens Actuators B Chem 54(1–2):3–15

    CAS  Google Scholar 

  56. 56.

    Sun S et al (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992

    CAS  PubMed  Google Scholar 

  57. 57.

    Zheng N, Fan J, Stucky GD (2006) One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J Am Chem Soc 128(20):6550–6551

    CAS  PubMed  Google Scholar 

  58. 58.

    Wu W et al (2010) Core–shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials 31(29):7555–7566

    CAS  PubMed  Google Scholar 

  59. 59.

    Dreaden EC et al (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779

    CAS  PubMed  Google Scholar 

  60. 60.

    Schmid G (2005) Nanoparticles. Wiley, Hoboken

    Google Scholar 

  61. 61.

    Kelly KL et al (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. ACS Publications, Washington

    Google Scholar 

  62. 62.

    Jacobson DM, Sangha SP (1998) Future trends in materials for lightweight microwave packaging. Microelectron Int 15(3):17–21

    CAS  Google Scholar 

  63. 63.

    Śleziona J, Wieczorek J, Dyzia M (2006) Mechanical properties of silver matrix composites reinforced with ceramic particles. J Achiev Mater Manuf Eng 17(1–2):165–168

    Google Scholar 

  64. 64.

    Broza G (2010) Synthesis, properties, functionalisation and applications of carbon nanotubes: a state of the art review. Chem Chem Technol 4(1):35–45

    Google Scholar 

  65. 65.

    Cha SI et al (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv Mater 17(11):1377–1381

    CAS  Google Scholar 

  66. 66.

    Kim KT et al (2008) The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites. Small 4(11):1936–1940

    CAS  PubMed  Google Scholar 

  67. 67.

    Dang TMD et al (2011) Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv Nat Sci Nanosci Nanotechnol 2(1):015009

    Google Scholar 

  68. 68.

    Wen J et al (2011) Preparation of copper nanoparticles in a water/oleic acid mixed solvent via two-step reduction method. Colloids Surf A 373(1–3):29–35

    CAS  Google Scholar 

  69. 69.

    Kim KT et al (2011) Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing. Scr Mater 64(2):181–184

    CAS  Google Scholar 

  70. 70.

    Salavati-Niasari M, Davar F (2009) Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor. Mater Lett 63(3–4):441–443

    CAS  Google Scholar 

  71. 71.

    Charinpanitkul T et al (2009) Single-step synthesis of nanocomposite of copper and carbon nanoparticles using arc discharge in liquid nitrogen. Mater Chem Phys 116(1):125–128

    CAS  Google Scholar 

  72. 72.

    Yu W et al (2009) Synthesis and characterization of monodispersed copper colloids in polar solvents. Nanoscale Res Lett 4(5):465

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Cheng Z et al (2011) Facile fabrication of ultrasmall and uniform copper nanoparticles. Mater Lett 65(19–20):3005–3008

    CAS  Google Scholar 

  74. 74.

    Solanki JN, Sengupta R, Murthy Z (2010) Synthesis of copper sulphide and copper nanoparticles with microemulsion method. Solid State Sci 12(9):1560–1566

    CAS  Google Scholar 

  75. 75.

    Park BK et al (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311(2):417–424

    CAS  PubMed  Google Scholar 

  76. 76.

    Firmansyah DA et al (2009) Crystalline phase reduction of cuprous oxide (Cu2O) nanoparticles accompanied by a morphology change during ethanol-assisted spray pyrolysis. Langmuir 25(12):7063–7071

    CAS  PubMed  Google Scholar 

  77. 77.

    Blackford R (1998) Performance demands on aerospace paints relative to environmental legislation. Aircr Eng Aerosp Technol 70(6):451–455

    Google Scholar 

  78. 78.

    Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12(3):608–622

    CAS  Google Scholar 

  79. 79.

    Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079

    CAS  Google Scholar 

  80. 80.

    Pandey JK et al (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88(2):234–250

    CAS  Google Scholar 

  81. 81.

    Choa Y-H et al (2003) Preparation and characterization of metal/ceramic nanoporous nanocomposite powders. J Magn Magn Mater 266(1–2):12–19

    CAS  Google Scholar 

  82. 82.

    Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63

    Google Scholar 

  83. 83.

    Hussain F et al (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575

    CAS  Google Scholar 

  84. 84.

    Choi S-M, Awaji H (2005) Nanocomposites—a new material design concept. Sci Technol Adv Mater 6(1):2

    CAS  Google Scholar 

  85. 85.

    Andrews R, Weisenberger M (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8(1):31–37

    CAS  Google Scholar 

  86. 86.

    Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C 23(6–8):763–772

    Google Scholar 

  87. 87.

    Thompson CM et al (2003) Preparation and characterization of metal oxide/polyimide nanocomposites. Compos Sci Technol 63(11):1591–1598

    CAS  Google Scholar 

  88. 88.

    Meda L et al (2005) Nano-composites for rocket solid propellants. Compos Sci Technol 65(5):769–773

    CAS  Google Scholar 

  89. 89.

    Nalwa HS (2000) Handbook of advanced electronic and photonic materials and devices, vol 1. Academic Press, Cambridge

    Google Scholar 

  90. 90.

    Dresselhaus MS, Avouris P (2001) Introduction to carbon materials research. In: Avouris P (ed) Carbon nanotubes. Springer, pp 1–9

  91. 91.

    Meador M et al (2012) Nanotechnology roadmap technology area 10. National Aeronautics and Space Administration (NASA), Washington

    Google Scholar 

  92. 92.

    Malsch I (2013) The just war theory and the ethical governance of research. Sci Eng Ethics 19(2):461–486

    PubMed  Google Scholar 

  93. 93.

    Lee T-W et al (2016) Electrically conductive and strong cellulose-based composite fibers reinforced with multiwalled carbon nanotube containing multiple hydrogen bonding moiety. Compos Sci Technol 123:57–64

    CAS  Google Scholar 

  94. 94.

    Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975

    CAS  Google Scholar 

  95. 95.

    Gohardani AS, Doulgeris G, Singh R (2011) Challenges of future aircraft propulsion: a review of distributed propulsion technology and its potential application for the all electric commercial aircraft. Prog Aerosp Sci 47(5):369–391

    Google Scholar 

  96. 96.

    Gohardani AS, Gohardani O (2012) Ceramic engine considerations for future aerospace propulsion. Aircr Eng Aerosp Technol 84(2):75–86

    Google Scholar 

  97. 97.

    Gohardani AS (2013) A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation. Prog Aerosp Sci 57:25–70

    Google Scholar 

  98. 98.

    Baur J, Silverman E (2007) Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bull 32(4):328–334

    CAS  Google Scholar 

  99. 99.

    Allaoui A et al (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62(15):1993–1998

    CAS  Google Scholar 

  100. 100.

    Song PA et al (2008) Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene. J Mater Chem 18(42):5083–5091

    CAS  Google Scholar 

  101. 101.

    Xie X-L, Mai Y-W, Zhou X-P (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep 49(4):89–112

    Google Scholar 

  102. 102.

    O’Donnell SE (2003) Impact of nanomaterials in airframes on commercial aviation. In: AIAA third annual aviation technology, integration, and operations (ATIO) technology conference. The American Institute of Aeronautics and Astronautics, Denver, CO

  103. 103.

    Heimann M et al (2008) Investigations of carbon nanotubes epoxy composites for electronics packaging. In: Electronic components and technology conference, 2008. ECTC 2008. 58th. IEEE

  104. 104.

    Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792

    CAS  PubMed  Google Scholar 

  105. 105.

    Cinausero N et al (2008) Fire retardancy of polymers: new strategies and mechanisms. Royal Society of Chemistry, London

    Google Scholar 

  106. 106.

    Saito Y, Uemura S (2000) Field emission from carbon nanotubes and its application to electron sources. Carbon 38(2):169–182

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Aamer Saeed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iqbal, A., Saeed, A. & Ul-Hamid, A. A review featuring the fundamentals and advancements of polymer/CNT nanocomposite application in aerospace industry. Polym. Bull. 78, 539–557 (2021). https://doi.org/10.1007/s00289-019-03096-0

Download citation


  • Nanocomposites
  • Carbon nanotubes
  • Nanoparticles