New polymer systems based on polyethylene glycol: synthesis, characterization, and study of the solubility behavior

Abstract

Recently due to the exclusive rheological properties and a highly branched structure, star-shaped polymers have received more attention. In the first section of the present work, the polyethylene glycol (PEG)-based star-shaped polymer systems were prepared from the reaction of methoxypolyethylene glycols with various molecular weight as arm and trimesoyl chloride (TMC) as a core. The structure of the synthesized star-shaped polymers confirmed using the Fourier transform infrared spectroscopy and proton nuclear magnetic resonance. The solubility test showed that the synthesized polymers are soluble in water, dimethyl sulfoxide, dimethylformamide, and chlorinated solvents. In the second part of this work, the crosslinked PEGs preparation possibility in the melt state by using the trimesic acid (TMA) and TMC as a crosslinker was investigated. Evaluation of the swelling and solubility behavior of the prepared systems showed that the prepared crosslinked systems with TMA are soluble in most of the organic solvents, while the crosslinked systems with TMC as a crosslinker are insoluble in all of the organic solvents and show the swellability characteristics. From the obtained results it is concluded that the TMC is a better crosslinker for the crosslinking of PEG in the melt state.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

References

  1. 1.

    Mahida VP, Patel MP (2016) Removal of some most hazardous cationic dyes using novel poly (NIPAAm/AA/N-allylisatin) nanohydrogel. Arab J Chem 9(3):430–442. https://doi.org/10.1016/j.arabjc.2014.05.016

    CAS  Article  Google Scholar 

  2. 2.

    Tan JH, McMillan NAJ, Payne E, Alexander C, Heath F, Whittaker AK, Thurecht KJ (2012) Hyperbranched polymers as delivery vectors for oligonucleotides. J Polym Sci Part A Polym Chem 50(13):2585–2595. https://doi.org/10.1002/pola.26055

    CAS  Article  Google Scholar 

  3. 3.

    Knop K, Pretzel D, Urbanek A, Rudolph T, Scharf DH, Schallon A, Wagner M, Schubert S, Kiehntopf M, Brakhage AA, Schacher FH, Schubert US (2013) Star-shaped drug carriers for doxorubicin with POEGMA and POEtOxMA brush-like shells: a structural, physical, and biological comparison. Biomacromolecules 14(8):2536–2548. https://doi.org/10.1021/bm400091n

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Namazi H, Jafarirad S (2011) Application of hybrid organic/inorganic dendritic ABA type triblock copolymers as new nanocarriers in drug delivery systems. Int J Polym Mater Polym Biomater 60(9):603–619. https://doi.org/10.1080/00914037.2010.531824

    CAS  Article  Google Scholar 

  5. 5.

    Namazi H, Kanani A (2009) Investigation diffusion mechanism of β-lactam conjugated telechelic polymers of PEG and β-cyclodextrin as the new nanosized drug carrier devices. Carbohydr Polym 76(1):46–50. https://doi.org/10.1016/j.carbpol.2008.09.023

    CAS  Article  Google Scholar 

  6. 6.

    Namazi H, Fathi F, Heydari A (2012) Nanoparticles based on modified polysaccharides. In: Hashim AA (ed) The delivery of nanoparticles. InTech, London

    Google Scholar 

  7. 7.

    Rajulu AV, Sab PM (1995) Acoustical parameters of polyethylene glycol/water mixtures. Bull Mater Sci 18(3):247–253

    CAS  Article  Google Scholar 

  8. 8.

    Rehmani S, Ahmad M, Minhas MU, Anwar H, Zangi MI-u-d, Sohail M (2017) Development of natural and synthetic polymer-based semi-interpenetrating polymer network for controlled drug delivery: optimization and in vitro evaluation studies. Polym Bull 74(3):737–761. https://doi.org/10.1007/s00289-016-1743-y

    CAS  Article  Google Scholar 

  9. 9.

    Ahmadian Y, Bakravi A, Hashemi H, Namazi H (2019) Synthesis of polyvinyl alcohol/CuO nanocomposite hydrogel and its application as drug delivery agent. Polym Bull 76(4):1967–1983. https://doi.org/10.1007/s00289-018-2477-9

    CAS  Article  Google Scholar 

  10. 10.

    Namazi H (2017) Polymers in our daily life. Bioimpacts 7(2):73–74. https://doi.org/10.15171/bi.2017.09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Pooresmaeil M, Namazi H (2019) Preparation and characterization of polyvinyl alcohol/β-cyclodextrin/GO-Ag nanocomposite with improved antibacterial and strength properties. Polym Adv Technol 30(2):447–456. https://doi.org/10.1002/pat.4484

    CAS  Article  Google Scholar 

  12. 12.

    Stringer JL, Peppas NA (1996) Diffusion of small molecular weight drugs in radiation-crosslinked poly(ethylene oxide) hydrogels. J Control Release 42(2):195–202. https://doi.org/10.1016/0168-3659(96)01457-5

    CAS  Article  Google Scholar 

  13. 13.

    Merrill EW, Dennison KA, Sung C (1993) Partitioning and diffusion of solutes in hydrogels of poly(ethylene oxide). Biomaterials 14(15):1117–1126. https://doi.org/10.1016/0142-9612(93)90154-T

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Adeli M, Namazi H, Du F, Hönzke S, Hedtrich S, Keilitz J, Haag R (2015) Synthesis of multiarm star copolymers based on polyglycerol cores with polylactide arms and their application as nanocarriers. RSC Adv 5(20):14958–14966. https://doi.org/10.1039/c4ra14619k

    CAS  Article  Google Scholar 

  15. 15.

    Javanbakht S, Pooresmaeil M, Hashemi H, Namazi H (2018) Carboxymethylcellulose capsulated Cu-based metal-organic framework-drug nanohybrid as a pH-sensitive nanocomposite for ibuprofen oral delivery. Int J Biol Macromol 119:588–596. https://doi.org/10.1016/j.ijbiomac.2018.07.181

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Lapienis G (2009) Star-shaped polymers having PEO arms. Prog Polym Sci 34(9):852–892. https://doi.org/10.1016/j.progpolymsci.2009.04.006

    CAS  Article  Google Scholar 

  17. 17.

    Fetters LJ, Kiss AD, Pearson DS, Quack GF, Vitus FJ (1993) Rheological behavior of star-shaped polymers. Macromolecules 26(4):647–654. https://doi.org/10.1021/ma00056a015

    CAS  Article  Google Scholar 

  18. 18.

    Ravi Shankar SA, Deo M, Kulkarni R, Gundiah S (1988) Selective flocculation of iron oxide–kaolin mixtures using a modified polyacrylamide flocculant. Bull Mater Sci 10(5):423–433

    Article  Google Scholar 

  19. 19.

    Namazi H, Mohammad Pour Fard A, Pooresmaeil M (2019) Peripherally functionalized based dendrimers as the template for synthesis of silver nanoparticles and investigation the affecting factors on their properties. Polym Bull 76(9):4659–4675. https://doi.org/10.1007/s00289-018-2629-y

    CAS  Article  Google Scholar 

  20. 20.

    Pooresmaeil M, Namazi H (2018) Surface modification of graphene oxide with stimuli-responsive polymer brush containing β-cyclodextrin as a pendant group: preparation, characterization, and evaluation as controlled drug delivery agent. Colloids Surf B 172:17–25. https://doi.org/10.1016/j.colsurfb.2018.08.017

    CAS  Article  Google Scholar 

  21. 21.

    Kazempour M, Namazi H, Akbarzadeh A, Kabiri R (2019) Synthesis and characterization of PEG-functionalized graphene oxide as an effective pH-sensitive drug carrier. Artif Cells Nanomed Biotechnol 47(1):90–94

    CAS  Article  Google Scholar 

  22. 22.

    Gogoi P, Borah R (2018) Investigation of PEG-6000 bridged –N–SO3H functionalized geminal dicationic ionic liquids for catalytic conversion of fructose to 5-hydroxymethylfurfural. J Chem Sci 130(12):170. https://doi.org/10.1007/s12039-018-1570-9

    CAS  Article  Google Scholar 

  23. 23.

    Karmakar G, Nahak P, Guha P, Roy B, Nath RK, Panda AK (2018) Role of PEG 2000 in the surface modification and physicochemical characteristics of pyrazinamide loaded nanostructured lipid carriers. J Chem Sci 130(4):42. https://doi.org/10.1007/s12039-018-1448-x

    CAS  Article  Google Scholar 

  24. 24.

    Ye W, Jiang H, Yang X-C (2011) Diethylamine functionalized polyethylene glycol as a novel and efficient catalyst for Knoevenagel condensation. J Chem Sci 123(3):331–334. https://doi.org/10.1007/s12039-011-0085-4

    CAS  Article  Google Scholar 

  25. 25.

    Ozcelik B, Palmer J, Ladewig K, Facal Marina P, Stevens GW, Abberton K, Morrison WA, Blencowe A, Qiao GG (2018) Biocompatible porous polyester-ether hydrogel scaffolds with cross-linker mediated biodegradation and mechanical properties for tissue augmentation. Polymers 10(2):179

    Article  Google Scholar 

  26. 26.

    Savaş H, Güven O (2001) Investigation of active substance release from poly (ethylene oxide) hydrogels. Int J Pharm 224(1–2):151–158

    Article  Google Scholar 

  27. 27.

    Bunker A (2012) Poly(ethylene glycol) in drug delivery, why does it work, and can we do better? All atom molecular dynamics simulation provides some answers. Phys Procedia 34:24–33. https://doi.org/10.1016/j.phpro.2012.05.004

    Article  Google Scholar 

  28. 28.

    Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49(36):6288–6308

    CAS  Article  Google Scholar 

  29. 29.

    Namazi H, Hashemipour SS, Toomari Y (2017) Synthesis of citric-acid-based dendrimers decorated with ferrocenyl groups and investigation of their electroactivity. Polym Bull 74(9):3783–3796. https://doi.org/10.1007/s00289-017-1930-5

    CAS  Article  Google Scholar 

  30. 30.

    Philippova OE, Topchieva IN, Kuchanov SI (1986) On the possibility of chemical modification of polyethylene glycol in melt. Polym Bull 15(4):297–302. https://doi.org/10.1007/bf00254847

    Article  Google Scholar 

  31. 31.

    Meng F, Engbers GH, Feijen J (2005) Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. J Control Release 101(1–3):187–198

    CAS  Article  Google Scholar 

  32. 32.

    Furness E, Ross A, Davis T, King G (1998) A hydrophobic interaction site for lysozyme binding to polyethylene glycol and model contact lens polymers. Biomaterials 19(15):1361–1369

    CAS  Article  Google Scholar 

  33. 33.

    Zhang X, Yang D, Nie J (2008) Chitosan/polyethylene glycol diacrylate films as potential wound dressing material. Int J Biol Macromol 43(5):456–462

    CAS  Article  Google Scholar 

  34. 34.

    Namazi H, Bahrami S, Entezami AA (2005) Synthesis and controlled release of biocompatible prodrugs of beta-cyclodextrin linked with PEG containing ibuprofen or indomethacin. Iran Polym J 14(10):921

    CAS  Google Scholar 

  35. 35.

    Fruijtier-Pölloth C (2005) Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology 214(1–2):1–38

    Article  Google Scholar 

  36. 36.

    Klingshirn MA, Spear SK, Holbrey JD, Huddleston JG, Rogers RD (2005) Synthesis, characterization, and application of cross-linked poly(ethylene glycol) networks used for the gelation of ionic liquids. In: Brazel CS, Rogers RD (eds) Ionic liquids in polymer systems, vol 913. ACS symposium series. American Chemical Society, Washington, DC, pp 149–162. https://doi.org/10.1021/bk-2005-0913.ch010

    Google Scholar 

  37. 37.

    Farhoudian S, Yadollahi M, Namazi H (2016) Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads. Int J Biol Macromol 82:837–843. https://doi.org/10.1016/j.ijbiomac.2015.10.018

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Bakravi A, Ahamadian Y, Hashemi H, Namazi H (2018) Synthesis of gelatin-based biodegradable hydrogel nanocomposite and their application as drug delivery agent. Adv Polym Technol 37(7):2625–2635. https://doi.org/10.1002/adv.21938

    CAS  Article  Google Scholar 

  39. 39.

    Javanbakht S, Nazari N, Rakhshaei R, Namazi H (2018) Cu-crosslinked carboxymethylcellulose/naproxen/graphene quantum dot nanocomposite hydrogel beads for naproxen oral delivery. Carbohydr Polym 195:453–459. https://doi.org/10.1016/j.carbpol.2018.04.103

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Dadashzadeh A, Imani R, Moghassemi S, Omidfar K, Abolfathi N (2019) Study of hybrid alginate/gelatin hydrogel-incorporated niosomal Aloe vera capable of sustained release of Aloe vera as potential skin wound dressing. Polym Bull. https://doi.org/10.1007/s00289-019-02753-8

    Article  Google Scholar 

  41. 41.

    Pattammattel A, Stromer BS, Baveghems C, Benson K, Kumar CV (2018) Stimuli-responsive, protein hydrogels for potential applications in enzymology and drug delivery§. J Chem Sci 130(10):145. https://doi.org/10.1007/s12039-018-1538-9

    CAS  Article  Google Scholar 

  42. 42.

    Molina I, Li S, Martinez MB, Vert M (2001) Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials 22(4):363–369. https://doi.org/10.1016/S0142-9612(00)00192-7

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Hyder MN, Huang RYM, Chen P (2009) Composite poly(vinyl alcohol)–poly(sulfone) membranes crosslinked by trimesoyl chloride: characterization and dehydration of ethylene glycol–water mixtures. J Membr Sci 326(2):363–371. https://doi.org/10.1016/j.memsci.2008.10.017

    CAS  Article  Google Scholar 

  44. 44.

    Yadollahi M, Namazi H, Aghazadeh M (2015) Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides. Int J Biol Macromol 79:269–277. https://doi.org/10.1016/j.ijbiomac.2015.05.002

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Rakhshaei R, Namazi H (2017) A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater Sci Eng C 73:456–464. https://doi.org/10.1016/j.msec.2016.12.097

    CAS  Article  Google Scholar 

  46. 46.

    Namazi H, Adeli M (2003) Novel linear–globular thermoreversible hydrogel ABA type copolymers from dendritic citric acid as the A blocks and poly(ethyleneglycol) as the B block. Eur Polym J 39(7):1491–1500. https://doi.org/10.1016/S0014-3057(02)00385-3

    CAS  Article  Google Scholar 

  47. 47.

    Namazi H, Adeli M (2005) Synthesis of barbell-like triblock copolymers, dendritic triazine-block-poly (ethylene glycol)-block-dendritic triazine and investigation of their solution behaviors. Polymer 46(24):10788–10799

    CAS  Article  Google Scholar 

  48. 48.

    Wan T, Xu M, Chen L, Wu D, Cheng W, Li R, Zou C (2014) Synthesis and properties of a dual responsive hydrogel by inverse microemulsion polymerization. J Chem Sci 126(6):1623–1627. https://doi.org/10.1007/s12039-014-0743-4

    CAS  Article  Google Scholar 

  49. 49.

    Kim D-G, Kang H, Choi Y-S, Han S, Lee J-C (2013) Photo-cross-linkable star-shaped polymers with poly(ethylene glycol) and renewable cardanol side groups: synthesis, characterization, and application to antifouling coatings for filtration membranes. Polym Chem 4(19):5065–5073. https://doi.org/10.1039/C3PY00756A

    CAS  Article  Google Scholar 

  50. 50.

    Wang K, Huang W, Zhou Y, Yan D (2008) Synthesis and characterization of three-arm star-shaped polyethylene glycols with 1,1,1-trihydroxmethylpropane as cores. Front Chem China 3(3):298–303. https://doi.org/10.1007/s11458-008-0050-z

    Article  Google Scholar 

  51. 51.

    Hirao A, Kawasaki K, Higashihara T (2004) Precise synthesis of asymmetric star-shaped polymers by coupling reactions of new specially designed polymer anions with chain-end-functionalized polystyrenes with benzyl bromide moieties. Sci Technol Adv Mater 5(4):469

    CAS  Article  Google Scholar 

  52. 52.

    Elkins CL, Viswanathan K, Long TE (2006) Synthesis and characterization of star-shaped poly (ethylene-co-propylene) polymers bearing terminal self-complementary multiple hydrogen-bonding sites. Macromolecules 39(9):3132–3139

    CAS  Article  Google Scholar 

  53. 53.

    Gasteier P, Reska A, Schulte P, Salber J, Offenhäusser A, Moeller M, Groll J (2007) Surface grafting of PEO-based star-shaped molecules for bioanalytical and biomedical applications. Macromol Biosci 7(8):1010–1023. https://doi.org/10.1002/mabi.200700064

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Namazi H, Heydari A (2014) Synthesis of β-cyclodextrin-based dendrimer as a novel encapsulation agent. Polym Int 63(8):1447–1455. https://doi.org/10.1002/pi.4637

    CAS  Article  Google Scholar 

  55. 55.

    Namazi H, Fard AMP (2011) Preparation of gold nanoparticles in the presence of citric acid-based dendrimers containing periphery hydroxyl groups. Mater Chem Phys 129(1):189–194. https://doi.org/10.1016/j.matchemphys.2011.03.080

    CAS  Article  Google Scholar 

  56. 56.

    Namazi H, Jafarirad S (2011) Application of hybrid organic/inorganic dendritic ABA type triblock copolymers as new nanocarriers in drug delivery systems. Int J Polym Mater 60:603–619. https://doi.org/10.1080/00914037.2010.531824

    CAS  Article  Google Scholar 

  57. 57.

    Toomari Y, Namazi H, Akbar EA (2015) Synthesis of the dendritic type β-cyclodextrin on primary face via click reaction applicable as drug nanocarrier. Carbohydr Polym 132:205–213. https://doi.org/10.1016/j.carbpol.2015.05.087

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Chujo Y, Sada K, Kawasaki T, Saegusa T (1992) Synthesis of non-ionic hydrogel from star-shaped polyoxazoline. Polym J 24(11):1301

    CAS  Article  Google Scholar 

  59. 59.

    Hedenqvist MS, Yousefi H, Malmström E, Johansson M, Hult A, Gedde UW, Trollsås M, Hedrick JL (2000) Transport properties of hyperbranched and dendrimer-like star polymers. Polymer 41(5):1827–1840. https://doi.org/10.1016/S0032-3861(99)00336-5

    CAS  Article  Google Scholar 

  60. 60.

    Zhang Y, Zhao Q, Shao H, Zhang S, Han X (2014) Synthesis and characterization of star-shaped block copolymer sPCL-b-PEG-GA. Adv Mater Sci Eng 2014:6. https://doi.org/10.1155/2014/107375

    CAS  Article  Google Scholar 

  61. 61.

    Iza M, Stoianovici G, Viora L, Grossiord JL, Couarraze G (1998) Hydrogels of poly(ethylene glycol): mechanical characterization and release of a model drug. J Control Release 52(1):41–51. https://doi.org/10.1016/S0168-3659(97)00191-0

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Bromberg L (1996) Crosslinked poly(ethylene glycol) networks as reservoirs for protein delivery. J Appl Polym Sci 59(3):459–466. https://doi.org/10.1002/(sici)1097-4628(19960118)59:3%3c459:aid-app10%3e3.0.co;2-p

    CAS  Article  Google Scholar 

  63. 63.

    Zustiak SP, Leach JB (2010) Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules 11(5):1348–1357. https://doi.org/10.1021/bm100137q

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the University of Tabriz (Grant #77634252) and Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, for the financial supports for this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hassan Namazi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghaffari, A., Pooresmaeil, M., Namazi, H. et al. New polymer systems based on polyethylene glycol: synthesis, characterization, and study of the solubility behavior. Polym. Bull. 77, 5663–5680 (2020). https://doi.org/10.1007/s00289-019-03041-1

Download citation

Keywords

  • Polyethylene glycol
  • Star-shaped polymer
  • Crosslinked polymers
  • Trimesoyl chloride
  • Trimesic acid