Cu(II) sorption performance of silane-modified poly(NaSS-co-MA-co-AAm) and poly(NaSS-co-MA-co-NIPAM) terpolymers

Abstract

This study reports the adsorption of Cu(II) ion by 3-(2-aminoethylamino) propyldimethoxymethylsilane-modified terpolymers. Water-soluble poly(sodium 4-styrenesulfonate-co-maleic anhydride-co-acrylamide) [poly(NaSS-co-MA-co-AAm)] and poly(sodium 4-styrenesulfonate-co-maleic anhydride-co–N-isopropylacrylamide) [poly(NaSS-co-MA-co-NIPAM)] terpolymers were synthesized and then modified with silane to make them water-insoluble. 1H-NMR and FT-IR spectroscopy was used to study the chemical composition of the terpolymers. Also, acid number and viscosity of the polymers were determined. Cu(II) ion adsorption parameters (adsorbent dosage, contact time, pH and metal ion concentration) were studied, and the equilibrium data were evaluated using adsorption isotherm models; Freundlich isotherm gave the best fit. Cu(II) adsorption performance of poly(NaSS-co-MA-co-AAm) and poly(NaSS-co-MA-co-NIPAM) terpolymers was found to be 53.42 and 43.10%, respectively. The terpolymers can be used for removal of Cu(II) from aqueous media.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Zhao G, Huang X, Tang Z, Huang Q, Niu F, Wang X (2018) Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym Chem Uk 9(26):3562–3582

    CAS  Article  Google Scholar 

  2. 2.

    Wen J, Fang Y, Zeng G (2018) Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: a review of studies from the last decade. Chemosphere 201:627–643

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Bilal M, Shah JA, Ashfaq T, Gardazi SMH, Tahir AA, Pervez A, Haroon H, Mahmood Q (2013) Waste biomass adsorbents for copper removal from industrial wastewater—a review. J Hazard Mater 263:322–333

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Prasad M, Freitas H (2000) Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environ Pollut 110(2):277–283

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Al-Saydeh SA, El-Naas MH, Zaidi SJ (2017) Copper removal from industrial wastewater: A comprehensive review. J Ind Eng Chem 56:35–44

    CAS  Article  Google Scholar 

  6. 6.

    A. Okudan, B.E. Ataoglu, O. Sengoz, G. Arslan, Cu(II) Sorption Performance of Novel Chitosan/Ter-(vinyl pivalate-maleic anhydride-N-tert-butylacrylamide) Microcapsules, J Polym Environ (2019) 1–10.

  7. 7.

    Akbari A, Arsalani N, Eftekhari-Sis B, Amini M, Gohari G, Jabbari E (2019) Cube-octameric silsesquioxane (POSS)-capped magnetic iron oxide nanoparticles for the efficient removal of methylene blue. Front Chem Sci Eng 13(3):563–573

    CAS  Article  Google Scholar 

  8. 8.

    Eftekhari-Sis B, Akbari A, Motlagh PY, Bahrami Z, Arsalani N (2018) Dye adsorption on cubic polyhedral oligomeric silsesquioxane-Based poly (acrylamide-co-itaconic acid) hybrid nanocomposites: kinetic, thermodynamic and isotherms studies. J Inorg Organomet Polym 28(5):1728–1738

    CAS  Article  Google Scholar 

  9. 9.

    Bahrami Z, Akbari A, Eftekhari-Sis B (2019) Double network hydrogel of sodium alginate/polyacrylamide cross-linked with POSS: Swelling, dye removal and mechanical properties. Int J Biol Macromol 129:187–197

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Brusseau SGN, D’Agosto F, Magnet S, Couvreur L, Chamignon C, Charleux B (2011) Nitroxide-Mediated copolymerization of methacrylic acid and sodium 4-styrenesulfonate in water solution and one-pot synthesis of amphiphilic block copolymer nanoparticles. Macromolecules 44(14):5590–5598

    CAS  Article  Google Scholar 

  11. 11.

    Deng H-Y, Xu Y-Y, Zhu B-K, Wei X-Z, Liu F, Cui Z-Y (2008) Polyelectrolyte membranes prepared by dynamic self-assembly of poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) for nanofiltration (I). J Membr Sci 323(1):125–133

    CAS  Article  Google Scholar 

  12. 12.

    Rivas B, Seguel G, Geckeler K (2002) Synthesis, characterization, and properties of polychelates of poly (styrene sulfonic acid-co-maleic acid) with Co(II), Cu(II), Ni(II), and Zn (II). J Appl Polym Sci 85(12):2546–2551

    CAS  Article  Google Scholar 

  13. 13.

    Rivas BL, Munoz C (2009) Synthesis and metal ion adsorption properties of poly (4-sodium styrene sulfonate-co-acrylic acid). J Appl Polym Sci 114(3):1587–1592

    CAS  Article  Google Scholar 

  14. 14.

    Matsumoto K, Hasegawa H, Matsuoka H (2004) Synthesis of sodium-polystyrenesulfonate-grafted nanoparticles by core-cross-linking of block copolymer micelles. Tetrahedron 60(34):7197–7204

    CAS  Article  Google Scholar 

  15. 15.

    Ghosh SK, De P, Khastgir D, De S (2000) Ionic thermoplastic elastomer based on the zinc salt of sulfonated maleated EPDM rubber. I. Effect of zinc stearate on melt‐flow behavior, and dynamic mechanical, dielectric, and physical properties. J Appl Polym Sci 78(4):743–750

    CAS  Article  Google Scholar 

  16. 16.

    Luo X, Goh SH, Lee SY, Huan CHA (1999) Spectroscopic studies of interactions in complexes of poly (1-vinylimidazole) with poly (styrenesulfonic acid) or the zinc salt of poly (styrenesulfonate). Macromol Chem Phys 200(4):874–880

    CAS  Article  Google Scholar 

  17. 17.

    Hasanzadeh R, Najafi Moghadam P, Samadi N (2013) Synthesis and application of modified poly (styrene‐alt‐maleic anhydride) networks as a nano chelating resin for uptake of heavy metal ions. Polym Adv Technol 24(1):34–41

    CAS  Article  Google Scholar 

  18. 18.

    Hasanzadeh R, Moghadam PN, Samadi N, Asri-Rezaei S (2013) Removal of heavy-metal ions from aqueous solution with nanochelating resins based on poly (styrene-alt-maleic anhydride). J Appl Polym Sci 127(4):2875–2883

    CAS  Article  Google Scholar 

  19. 19.

    Abd El-Rehim HA, Hegazy EA, El-Hag Ali A (2000) Selective removal of some heavy metal ions from aqueous solution using treated polyethylene-g-styrene/maleic anhydride membranes. React Funct Polym 43(1):105–116

    Article  Google Scholar 

  20. 20.

    Kawaguchi S, Kitano T, Ito K (1991) Infrared and ultraviolet spectroscopic studies on intramolecular hydrogen bonding in an alternating copolymer of isobutylene and maleic acid. Macromolecules 24(22):6030–6036

    CAS  Article  Google Scholar 

  21. 21.

    Samadi N, Ansari R, Khodavirdilo B (2017) Removal of Copper ions from aqueous solutions using polymer derivations of poly (styrene-alt-maleic anhydride). Egypt J Pet 26(2):375–389

    Article  Google Scholar 

  22. 22.

    Rivas BL, Seguel GV, Geckeler KE (2001) Poly(styrene-alt-maleic acid)–metal complexes with divalent metal ions. synthesis, characterization, and physical properties. J Appl Polym Sci 81(6):1310–1315

    CAS  Article  Google Scholar 

  23. 23.

    Rivas BL, Seguel GV, Ancatripai C (2000) Polymer-metal complexes: Synthesis, characterization, and properties of poly(maleic acid) metal complexes with Cu(II), Co(II), Ni(II), and Zn(II). Polym Bull 44(5):445–452

    CAS  Article  Google Scholar 

  24. 24.

    Chen JJ, Ahmad AL, Ooi BS (2013) Poly(N-isopropylacrylamide-co-acrylic acid) hydrogels for copper ion adsorption: equilibrium isotherms, kinetic and thermodynamic studies. J Environ Chem Eng 1(3):339–348

    CAS  Article  Google Scholar 

  25. 25.

    Chauhan GS, Kumar S, Kumari A, Sharma R (2003) Study on the synthesis, characterization, and sorption of some metal ions on gelatin- and acrylamide-based hydrogels. J Appl Polym Sci 90(14):3856–3871

    CAS  Article  Google Scholar 

  26. 26.

    Chen JJ, Ahmad AL, Ooi BS (2014) Thermo-responsive properties of poly(N-isopropylacrylamide-co-acrylic acid) hydrogel and its effect on copper ion removal and fouling of polymer-enhanced ultrafiltration. J Membrane Sci 469:73–79

    CAS  Article  Google Scholar 

  27. 27.

    Ju X-J, Zhang S-B, Zhou M-Y, Xie R, Yang L, Chu L-Y (2009) Novel heavy-metal adsorption material: ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions. J Hazard Mater 167(1):114–118

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Morales DV, Rivas BL (2014) Poly (Acrylamide-co-Styrene Sodium Sulfonate) and Poly (2-Acrylamide-2-Methyl-1-Propanesulfonic Acid-co-Acrylic Acid) Resins with Removal Properties for Hg (II), Pb (II), Cd (II), and Zn (II). J Chil Chem Soc 59(2):2420–2426

    CAS  Article  Google Scholar 

  29. 29.

    Klumperman B (2010) Mechanistic considerations on styrene–maleic anhydride copolymerization reactions. Polym Chem-Uk 1(5):558–562

    CAS  Article  Google Scholar 

  30. 30.

    Tsuchida E, Tomono T (1971) Discussion on the mechanism of alternating copolymerization of styrene and maleic anhydride. Die Makromolekulare Chemie Macromol Chem Phys 141(1):265–298

    CAS  Article  Google Scholar 

  31. 31.

    Kim BK, Park SY, Park SJ (1991) Morphological, thermal and rheological properties of blends: Polyethylene/nylon-6, polyethylene/nylon-6/(maleic anhydride-g-polyethylene) and (maleic anhydride-g-polyethylene)/nylon-6. Eur Polymer J 27(4–5):349–354

    CAS  Article  Google Scholar 

  32. 32.

    Lucchesi C, Secrets P, Hirn C (1975) Standart method of chemical analysis. Krieger Publishing Company, New York

    Google Scholar 

  33. 33.

    Kocak N, Sahin M, Arslan G, Ucan HI (2012) Synthesis of crosslinked chitosan possessing schiff base and its use in metal removal. J Inorg Organomet Polym 22(1):166–177

    CAS  Article  Google Scholar 

  34. 34.

    Travas-Sejdic J, Easteal A (2000) Study of free-radical copolymerization of acrylamide with 2-acrylamido-2-methyl-1-propane sulphonic acid. J Appl Polym Sci 75(5):619–628

    CAS  Article  Google Scholar 

  35. 35.

    Genies C, Mercier R, Sillion B, Petiaud R, Cornet N, Gebel G, Pineri M (2001) Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer 42(12):5097–5105

    CAS  Article  Google Scholar 

  36. 36.

    Akbari A, Arsalani N (2016) Organic–inorganic incompletely condensed polyhedral oligomeric silsesquioxane-based nanohybrid: synthesis, characterization and dye removal properties. Polym Plastics Technol Eng 55(15):1586–1594

    CAS  Article  Google Scholar 

  37. 37.

    Rivas BL, Seguel GV, Geckeler KE (2002) Synthesis, characterization, and properties of polychelates of poly(styrene sulfonic acid-co-maleic acid) with Co(II), Cu(II), Ni(II), and Zn(II). J Appl Polym Sci 85(12):2546–2551

    CAS  Article  Google Scholar 

  38. 38.

    Deng H, Xu Y, Zhu B, Wei X, Liu F, Cui Z (2008) Polyelectrolyte membranes prepared by dynamic self-assembly of poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) for nanofiltration (I). J Membr Sci 323(1):125–133

    CAS  Article  Google Scholar 

  39. 39.

    Zhu Z, Yang X, He L-N, Li W (2012) Adsorption of Hg 2+ from aqueous solution on functionalized MCM-41. RSC Adv 2(3):1088–1095

    CAS  Article  Google Scholar 

  40. 40.

    Çelik S (2011) Poli (4-vinilpiridin) homopolimeri, maleik anhidrit ve n-izopropil akrilamid ile kopolimer ve terpolimerlerinin sentezi, karakterizasyonu ve özelliklerinin incelenmesi. Fen Bilimleri Enstitüsü, Gazi Üniversitesi Ankara

    Google Scholar 

Download references

Acknowledgement

The authors are thankful to Selcuk University Research Foundation (project number: BAP-14201016) for funding the study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ahmet Okudan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 607 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Okudan, A., Ozviran, E., Arslan, G. et al. Cu(II) sorption performance of silane-modified poly(NaSS-co-MA-co-AAm) and poly(NaSS-co-MA-co-NIPAM) terpolymers. Polym. Bull. 77, 5407–5421 (2020). https://doi.org/10.1007/s00289-019-03025-1

Download citation

Keywords

  • Adsorption
  • Silane modification
  • Water treatment
  • Terpolymer