Synthesis and characterization of chitosan-g-poly(AMPS-co-AA-co-AM)/ground basalt composite hydrogel: antibacterial activity

Abstract

A novel mineral-based superabsorbent hydrogel composite, poly (2-acrylamido-2-methylpropanesulfonic acid-co-acrylic acid-co-acrylamide)/ground basalt: CS-g-P(AMPS-co-AA-co-AM)/BST/BST, is prepared under microwave irradiation. The structural and morphological characterization of hydrogel is assessed using FTIR spectroscopy, X-ray diffractometry and scanning electron microscopy. The thermal stability of the hydrogel composite is explored using thermogravimetric analysis. The swelling kinetics of the hydrogel and the influence of the pH and the ionic strength of the surrounding solution on water absorbing capacity are also studied. The antibacterial activity of the superabsorbent composite against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) assayed by the inhibitory zone tests has shown that the introduction of ground basalt enhances the inhibition of the bacteria growth by simple contact with the hydrogel. To the authors’ knowledge, there have been no published scientific works that examine the synergistic bactericidal potency of combining ground basalt and chitosan-based hydrogels.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    Shi Y, Xue Z, Wang X, Wang L, Wang A (2013) Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly(acrylic acid)/montmorillonite three-dimensional cross-linked polymeric network hydrogels. Polym Bull 70:1163–1179

    CAS  Google Scholar 

  2. 2.

    Dubrovskii SA, Afanas’eva MV, Lagutina MA, Kazanskii KS (1990) Comprehensive characterization of superabsorbent polymers hydrogels. Polym Bull 24:107–113

    CAS  Google Scholar 

  3. 3.

    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications. J Adv Res 6:105–121

    CAS  PubMed  Google Scholar 

  4. 4.

    Bayramoglu G, Altintas B, Arica MY (2009) Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chem Eng J 152:339–346

    CAS  Google Scholar 

  5. 5.

    Zhao Y, Su H, Fang L, Tan T (2005) Superabsorbent hydrogels from poly(aspartic acid) with salt-, temperature- and pH-responsiveness properties. Polymer 46:5368–5376

    CAS  Google Scholar 

  6. 6.

    He G, Ke W, Chen X, Kong Y, Zheng H, Yin Y, Cai W (2017) Preparation and properties of quaternary ammonium chitosan-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogels. React Funct Polym 111:14–21

    CAS  Google Scholar 

  7. 7.

    Shi X, Wang W, Wang A (2011) Effect of surfactant on porosity and swelling behaviors of guar gum-g-poly(sodium acrylate-co-styrene)/attapulgite superabsorbent hydrogels. Colloid Surf B 88:279–286

    CAS  Google Scholar 

  8. 8.

    Kuang J, Yuk KY, Huh KM (2011) Polysaccharide-based superporous hydrogels with fast swelling and superabsorbent properties. Carbohydr Polym 83(1):284–290

    CAS  Google Scholar 

  9. 9.

    Zhang S, Guan Y, Fu G, Chen B, Peng F, Yao C, Sun R (2014) Organic/Inorganic superabsorbent hydrogels based on xylan and montmorillonite. J Nanomater 1(675035):1–11

    CAS  Google Scholar 

  10. 10.

    Pourjavadi A, Amini-Fazl MS, Ayyari M (2007) Optimization of synthetic conditions CMC-g-poly (acrylic acid)/Celite composite superabsorbent by Taguchi method and determination of its absorbency under load. Express Polym Lett 1(8):488–494

    CAS  Google Scholar 

  11. 11.

    Berdous D, Ferfera-Harrar H (2016) Green synthesis of nanosilver-loaded hydrogel nanocomposites for antibacterial application. Int J Pharmacol Pharm Sci 10:543–550

    Google Scholar 

  12. 12.

    Bouryabaf L, Moradi M, Tajik H, Badali A (2017) Biofilm removal and antimicrobial activities of agar hydrogel containing colloid nano-silver against Staphylococcus aureus and Salmonella typhimurium. J Med Bacteriol 6:51–58

    CAS  Google Scholar 

  13. 13.

    Ghasemzadeh H, Ghanaat F (2014) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21:355–368

    Google Scholar 

  14. 14.

    Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45:1177–1183

    CAS  PubMed  Google Scholar 

  15. 15.

    Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49:575–588

    CAS  PubMed  Google Scholar 

  16. 16.

    Ferfera-Harrar H, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly(acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym Sci 131:39747–39760

    Google Scholar 

  17. 17.

    Hamed I, Ozogul F, Regenstein J (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50

    CAS  Google Scholar 

  18. 18.

    Sahiner N, Sagbas S, Sahiner M, Silan C, Aktas N, Turk M (2017) Agar/chitosan IPN thin hydrogel films with antimicrobial and antioxidant properties for potential dressing applications. Curr Appl Polym Sci 1:52–62

    Google Scholar 

  19. 19.

    Chen S, Liu M, Jin S, Chen Y (2005) Synthesis and swelling properties of pH-sensitive hydrogels based on chitosan and poly(methacrylic acid) semi-interpenetrating polymer network. J Appl Polym Sci 98:1720–1726

    CAS  Google Scholar 

  20. 20.

    Pranantyo D, Xu LQ, Kang ET, Chan-Park MB (2018) Chitosan-based peptidopolysaccharides as cationic antimicrobial agents and antibacterial coatings. Biomacromol 19(6):2156–2165

    CAS  Google Scholar 

  21. 21.

    Kobasa I, Mariya M, Arsenieva L (2018) Basalt tufa as a bactericide filler for some packaging materials. Food Environ Saf J 98:81–1726

    Google Scholar 

  22. 22.

    http://www.insidecomposites.com/cellulose-and-basalt-innovations-at-techtextil/inside composites, 16th May 2017, Frankfurt

  23. 23.

    Said M, Atassi Y, Tally M, Khatib H (2018) Environmentally friendly chitosan-g-poly(acrylic acid-co-acrylamide)/ground basalt superabsorbent composite for agricultural applications. J Polym Environ 26:3937–3948

    CAS  Google Scholar 

  24. 24.

    Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymers materials: a review. Iran Polym J 17:451–477

    CAS  Google Scholar 

  25. 25.

    El-Sayed M, Sorour M, Abd El Moneem N, Talaat H, Shalaan H, ElMarsafy S (2011) Synthesis and properties of natural polymers-grafted-acrylamide. World Appl Sci J 13:360–368

    CAS  Google Scholar 

  26. 26.

    Yan S, Wang T, Li X, Jian Y, Zhang K, Li G, Yin J (2017) Fabrication of injectable hydrogels based on poly(l-glutamic acid) and chitosan. RCS Adv 7:17005–17019

    CAS  Google Scholar 

  27. 27.

    Kamal Hossen M, Alaul Azim M, Sarwaruddin Chowdhury AM, Dafader NC, Haque ME, Akter F (2008) Characterization of poly(vinyl alcohol) and poly(vinyl pyrrolidone) co-polymer blend hydrogen prepared by application of gamma radiation. Polym Plast Technol Eng 47(7):662–665

    Google Scholar 

  28. 28.

    Jeng YT (2015) Preparation and characterization of controlled release fertilizers using alginate-based superabsorbent polymer for plantations in Malaysia. Master thesis, University Tunku Abdul Rahman, Malaysia

  29. 29.

    Rashidzadeh A, Olad A, Salari D, Reyhanitabar A (2014) On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly(acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. J Polym Res 21:344–359

    Google Scholar 

  30. 30.

    Huang M, Shen X, Sheng Y, Fang Y (2005) Study of graft copolymerization of N-maleamic acid-chitosan and butyl acrylate by γ-ray irradiation. Int J Biol Macromol 36:98–102

    CAS  PubMed  Google Scholar 

  31. 31.

    Thakur S, Arotiba O (2018) Synthesis, characterization and adsorption studies of an acrylic acid-grafted sodium alginate- based TiO2 hydrogel nanocomposite. Adsorpt Sci Technol 36(1–2):458–477. https://doi.org/10.1177/0263617417700636

    CAS  Article  Google Scholar 

  32. 32.

    Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82

    CAS  Google Scholar 

  33. 33.

    Nadi F, Brave C (2011) Environmentally friendly superabsorbent polymer for water conservation in agricultural field. J Soil Sci Environ Manag 2(7):206–211

    Google Scholar 

  34. 34.

    Bulut Y, Akcay G, Elma D, Serhatli E (2009) Synthesis of clay-based superabsorbent composite and its sorption capability. J Hazard Mater 171:717–723

    CAS  PubMed  Google Scholar 

  35. 35.

    American Association of Textile Chemists and Colorists (2009) AATCC test method 147-2004. Library of Congress Catalog Number: 54-34349, pp 251–252

  36. 36.

    El-Shahate M, Saraya I (2014) Study physico-chemical properties of blended cements containing fixed amount of silica fume, blast furnace slag, basalt and limestone, a comparative study. Constr Build Mater 72:104–112

    Google Scholar 

  37. 37.

    Mohammad N, Tally M, Atassi Y (2017) Synthesis and swelling behavior of a novel metal-chelating superabsorbent hydrogels based on sodium alginate-g-poly(AMPS-co-AA-co-AM) obtained under microwave irradiation. Polym Bull 74(11):4453–4481

    CAS  Google Scholar 

  38. 38.

    Spagnol C, Rodrigues FHA, Neto AGVC, Pereira AGB, Fajardo AR, Radovanovic E, Rubira AF, Muniz EC (2012) Nanocomposites based on poly (acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48:454–463

    CAS  Google Scholar 

  39. 39.

    Kalaleh HA, Tally M, Atassi Y (2013) Preparation of a clay based superabsorbent polymer composite of copolymer poly(acrylate-co- acrylamide) with bentonite via microwave radiation. Res Rev Polym 4:145–150

    CAS  Google Scholar 

  40. 40.

    Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ (2004) Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties. Eur Polym J 40:1399–1407

    CAS  Google Scholar 

  41. 41.

    Lim DW, Yoon KJ, Ko SW (2000) Synthesis of AA-based superabsorbent interpenetrated with sodium PVA sulfate. J Appl Polym Sci 78(14):2525–2532

    CAS  Google Scholar 

  42. 42.

    Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–390

    CAS  Google Scholar 

  43. 43.

    Lanthong P, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbodydr Polym 66:229–245

    CAS  Google Scholar 

  44. 44.

    Karaaslan MA, Tshabalala MA, Buischle-diller G (2010) Wood hemicelluloses/chitosan based semi: interpenetrating network hydrogels: mechanical, swelling and controlled drug release properties. BioResources 5(2):1036–1054

    CAS  Google Scholar 

  45. 45.

    Kim BS, Yeo TY, Yun YH, Lee BK, Cho YW (2009) Facile preparation of biodegradable glycol chitosan hydrogen using divinyladipate as a crosslinker. Macromol Res 517(10):734–738

    Google Scholar 

  46. 46.

    Schott H (1992) Swelling kinetics of polymers. J Macromol Sci B 31:1–9

    CAS  Google Scholar 

  47. 47.

    Pourjavadi A, Mahdavidia GR (2006) Superabsorbency, pH-sensitivity and swelling kinetics of partially hydrolyzed chitosan-g-poly(acrylamide) hydrogels. Turk J Chem 30:595–608

    CAS  Google Scholar 

  48. 48.

    Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808–816

    CAS  PubMed  Google Scholar 

  49. 49.

    Haydel S, Remenih C, Williams L (2008) Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J Antimicrob Chemother 61:353–361

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yomen Atassi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Atassi, Y., Said, M., Tally, M. et al. Synthesis and characterization of chitosan-g-poly(AMPS-co-AA-co-AM)/ground basalt composite hydrogel: antibacterial activity. Polym. Bull. 77, 5281–5302 (2020). https://doi.org/10.1007/s00289-019-03017-1

Download citation

Keywords

  • Hydrogel
  • 2-Acrylamido-2-methyl-1-propanesulfonic acid
  • Acrylics
  • Chitosan
  • Basalt
  • Antibacterial activity