Investigating carbon-black-filled polymer composites’ brittleness

Abstract

In this study, an attempt is made to quantify the brittleness in semicrystalline ethylene-co-butyl acrylate copolymer samples reinforced by carbon black (CB) nanoparticles. A series of samples with different CB volume fractions are investigated at ambient conditions. Two approaches are used to quantify the brittleness parameter. On the one hand, we consider brittleness of polymeric materials quantitatively defined by Brostow and Hagg Lobland. On the other hand, Lawn and Marshall’s approach based on the resistance of a material to both deformation and fracture is adopted. The ability of these two approaches to provide an estimation of the brittleness index is studied. The results also show the correlation of the brittleness index to the indentation properties, i.e., hardness and Young’s modulus. Additionally, we discuss the commonality between the bulk mechanical properties, i.e., hardening modulus and frictional forces, and brittleness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Iost A (2013) Détermination de la ténacité de matériaux fragiles ou ductiles à partir de l’essai d’indentation. Revue de Métallurgie 110:215–233

    Article  Google Scholar 

  2. 2.

    Brostow W, Lobland HEH, Narkis M (2011) The concept of materials brittleness and its applications. Polym Bull 67:1697–1707

    CAS  Article  Google Scholar 

  3. 3.

    Kotrechko S (2018) Embrittlement of RPV metal under long-term irradiation: state of-the-art and challenges. Proc Eng 13:11–21

    Google Scholar 

  4. 4.

    Kaiser MR, Anuar H, Razak SBA (2011) Ductile–brittle transition temperature of polylactic acid-based biocomposite. J Thermoplast Compos 26:216–226

    Article  Google Scholar 

  5. 5.

    Callister WD Jr. (1998) Materials science and engineering: an introduction, 4th edn. Wiley, New York

    Google Scholar 

  6. 6.

    Sailors RH, Corten HT (1971) Fracture toughness. ASTM STP 514:164–181

    Google Scholar 

  7. 7.

    Lamon J (2016) Brittle fracture and damage of brittle materials and composites: statistical-probabilistic approaches. Elsevier, Amsterdam

    Google Scholar 

  8. 8.

    Brostow W, Hagg Lobland HE, Khoja S (2015) Brittleness and toughness of polymers and other materials. Mater Lett 159:478

    CAS  Article  Google Scholar 

  9. 9.

    Kundie F, Muchtar A, Ahmad ZA (2018) Effects of filler size on the mechanical properties of polymer-filled dental composites: a review of recent developments. J Phys Sci 29:141–165

    CAS  Article  Google Scholar 

  10. 10.

    Flores A, Cagiao ME, Ezquerra TA, Balta Calleja FJ (2011) Influence of filler structure on microhardness of carbon black–polymer composites. J Appl Poly Sci 79:90

    Article  Google Scholar 

  11. 11.

    Rosato DV (2003) Plastics engineered product design. Elsevier, Amsterdam

    Google Scholar 

  12. 12.

    Griffith A (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198

    Article  Google Scholar 

  13. 13.

    Mechanical Testing and Evaluation (2000) In: Kuhn H, Medlin D (eds) ASM Handbook, vol 8 (ASM International, 2000). ISBN: 978-0-87170-389-7

  14. 14.

    Chazeau L, Gauthier C, Vigierand G, Cavaillé JV (2003) In: Nalwa HS (ed) Handbook of organic-inorganic hybrid materials and nanocomposites, vol 1. American Scientific Publishers, NewYork

    Google Scholar 

  15. 15.

    Brostow W, Hagg Lobland HE (2010) Brittleness of materials: implications for composites and a relation to impact strength. J Mater Sci 45:242

    CAS  Article  Google Scholar 

  16. 16.

    Brostow W, HaggLobland HE, Narkis M (2006) Sliding wear, viscoelasticity, and brittleness of polymers. J Mater Res 21:2422–2428

    CAS  Article  Google Scholar 

  17. 17.

    Lawn BR and Marshall DB (1979) Hardness, toughness and brittleness: an indentation, analysis. J Am Ceram Soc 62:347–350. [See also R. Lawn, T. Jensen, and A. Arora, Brittleness as an Indentation Size Effect, J. Mater. Sci., 11, 573-75 (1976)]

  18. 18.

    Mdarhri A, Brosseau C, Zaghrioui M, El Aboudi I (2012) Electronic conduction and microstructure in polymer composites filled with carbonaceous particles. J Appl Phys 112:034118

    Article  Google Scholar 

  19. 19.

    Elhaouzi F, Nourdine A, Brosseau C, Mdarhri A, El Aboudi I, Zaghrioui M (2019) Hypelastic behavior, and dynamic mechanical relaxation in carbon black polymer composites. Polym Compos 40:3005–3011

    CAS  Article  Google Scholar 

  20. 20.

    Moyano MA, París R, Martín-Martínez JM (2016) Int J Adhesion Adhes 65:47–53

    CAS  Article  Google Scholar 

  21. 21.

    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564

    CAS  Article  Google Scholar 

  22. 22.

    Douce J, Boilot JP, Biteau J, Scodellaro L, Jimenez A (2004) Effect of filler size and surface condition of nano-sized silica particles in polysiloxane coating. Thin Solid Films 466:114

    CAS  Article  Google Scholar 

  23. 23.

    Gibson RF (2014) A review of recent research on nanoindentation of polymer composites and their constituents. Compos Sci Technol 105:51

    CAS  Article  Google Scholar 

  24. 24.

    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Sorption of water in nylon 6-clay hybrid. J Appl Poly Sci 49:1259

    CAS  Article  Google Scholar 

  25. 25.

    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito T (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185

    CAS  Article  Google Scholar 

  26. 26.

    Paszkiewicz S, Szymczyk A, Pawlikowska D, Irska I, Taraghi I, Pilawka R, Gu J, Li X, Tu Y, Piesowicza E (2017) Synthesis and characterization of poly(ethyleneterephthalate-co-1,4-cyclohexanedimethyleneterephtlatate)-block-poly(tetramethylene oxide) copolymers. RSC Adv 7:41745

    CAS  Article  Google Scholar 

  27. 27.

    Cavaleiro A, Marques AP, Fernandes JV, Carvalho NJM, De Hosson JT (2005) Evolution of the microstructure, residual stresses, and mechanical properties of W–Si–N coatings after thermal annealing. J Mater Res 20:1356–1368

    CAS  Article  Google Scholar 

  28. 28.

    Musil J, Kunc F, Zeman H, Poláková H (2002) Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings. Surf Coat Technol 154:304–313

    CAS  Article  Google Scholar 

  29. 29.

    Haward RN (1993) Strain hardening of thermoplastics. Macromolecules 26:5860–5869

    CAS  Article  Google Scholar 

  30. 30.

    Elhaouzi F, Mdarhri A, Brosseau C, El Aboudi I, Almaggoussi A (2019) Effects of swelling on the effective mechanical and electrical properties of a carbon black filled polymer. Polym Bull 76:2765–2776

    CAS  Article  Google Scholar 

  31. 31.

    Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  32. 32.

    Unpublished report

  33. 33.

    Bentoumi M, Mdarhri A, Montagne A, Nourdine A, El Aboudi I, Iost A (2019) Nano-indentation for probing mechanical properties of nanocomposites based on ethylene butyl acrylate copolymer and carbon black. J Appl Polym Sci 136:47876

    Article  Google Scholar 

  34. 34.

    Thostenson ET, Chou TW (1999) Microwave processing: fundamentals and applications. Compos Part A 30:1055–1071

    Article  Google Scholar 

  35. 35.

    Brosseau C, Talbot P (2005) Instrumentation for microwave frequency-domain spectroscopy of polymers under uniaxial tension. Meas Sci Technol 16:1823–1832

    CAS  Article  Google Scholar 

  36. 36.

    Brosseau C, Ndong W (2008) Physical aging of plasto-ferrites under tensile stress and its effect on microwave properties. J Appl Phys 104:064108

    Article  Google Scholar 

  37. 37.

    Brosseau C, Ndong W, Mdarhri A (2008) Influence of uniaxial tension on the microwave absorption properties of filled polymers. J Appl Phys 104:074907

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Brosseau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Aboudi, I., Mdarhri, A., Brosseau, C. et al. Investigating carbon-black-filled polymer composites’ brittleness. Polym. Bull. 77, 4959–4969 (2020). https://doi.org/10.1007/s00289-019-03000-w

Download citation

Keywords

  • Composite
  • Brittleness
  • Carbon black
  • Polymer
  • Indentation
  • Modeling