Development of novel iota carrageenan-g-polyvinyl alcohol polyelectrolyte membranes for direct methanol fuel cell application


In this study, novel iota carrageenan-g-PVA polyelectrolyte membranes (PEMs) developed for application in direct methanol fuel cell (DMFC). Iota carrageenan (I-Car) was cross-linked with polyvinyl alcohol (PVA) both ionically and chemically using sulfophthalic acid (SPA) and glutaraldehyde (GA) for the first time. SPA plays a dual role which is to sulfonate the PVA and act as an ionic cross-linker. The use of iota carrageenan offers much more sulfonic acid groups, compared to the kappa carrageenan, which in addition to the sulfonic group of SPA contributes to the induction of the ion-exchange capacity and consequently the ionic conductivity of the developed membranes. Factors affecting the fabrication of the membranes such as polymers composition, cross-linking time, pH, temperature, cross-linker type, and concentration were studied. The chemical structures of the prepared membranes verified through FT-IR, TGA, and XRD techniques. Mechanical properties were investigated. Moreover, the ion-exchange capacity, water, methanol sorption, and the methanol crossover flux across the PEMs were adopted as monitors for this study. It was found that the methanol permeability and the IEC were 15% and 133% of Nafion®117. The efficiency factor for the prepared I-Car-g-PVA membrane was one order higher than that of the Nafion 117.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Miyatake K, Chikashige Y, Higuchi E, Watanabe M (2007) Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications. JACS 129:3879–3887

    CAS  Google Scholar 

  2. 2.

    Bi C, Zhang H, Zhang Y, Zhu X, Ma Y, Dai H, Xiao S (2008) Fabrication and investigation of SiO2 supported sulfated zirconia/Nafion® self-humidifying membrane for proton exchange membrane fuel cell applications. J Power Sources 184:197–203

    CAS  Google Scholar 

  3. 3.

    Nam SE, Kim SO, Kang Y, Lee JW, Lee KH (2008) Preparation of Nafion/sulfonated poly(phenylsilsesquioxane) nanocomposite as high temperature proton exchange membranes. J Membr Sci 322:466–474

    CAS  Google Scholar 

  4. 4.

    Gui L, Zhang C, Kang S, Tan N, Xiao G, Yan D (2010) Synthesis and properties of hexafluoroisopropylidene-containing sulfonated poly(arylene thioether phosphine oxide)s for proton exchange membranes. Int J Hydrog Energy 35:2436–2445

    CAS  Google Scholar 

  5. 5.

    Pivovar BS, Wang Y, Cussler EL (1999) Pervaporation membranes in direct methanol fuel cells. J Membr Sci 154:155–162

    CAS  Google Scholar 

  6. 6.

    Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4612

    PubMed  CAS  Google Scholar 

  7. 7.

    Zhu X, Liang Y, Pan H, Jian X, Zhang Y (2008) Synthesis and properties of novel H-bonded composite membranes from sulfonated poly(phthalazinone ether)s for PEMFC. J Membr Sci 312:59–65

    CAS  Google Scholar 

  8. 8.

    Dillon R, Srinivasan S, Aricò AS (2004) International activities in DMFC R&D: status of technologies and potential applications. J Power Sources 127:112–126

    CAS  Google Scholar 

  9. 9.

    Tan S, Belanger D (2005) Characterization and transport properties of Nafion/polyaniline composite membranes. J Phys Chem B 109:23480–23490

    PubMed  CAS  Google Scholar 

  10. 10.

    Min SH, Kim DJ (2010) SAXS cluster structure and properties of sPEEK/PEI composite membranes for DMFC applications. Solid State Ionics 180:1690–1693

    CAS  Google Scholar 

  11. 11.

    Huang CH, Wu HM, Chen CC, Wang CW, Kuo PL (2010) Preparation, characterization and methanol permeability of proton conducting membranes based on sulfonated ethylene-vinyl alcohol copolymer. J Membr Sci 353:1–9

    CAS  Google Scholar 

  12. 12.

    Kuver A, Vogel I, Vielstich W (1994) Distinct performance evaluation of a direct methanol SPE fuel cell. A new method using a dynamic hydrogen reference electrode. J Power Sources 52:77–80

    Google Scholar 

  13. 13.

    Jorissen L, Gogel V, Kerres J, Garche J (2002) New membranes for direct methanol fuel cells. J Power Sources 105:267–273

    CAS  Google Scholar 

  14. 14.

    Sank J, Byun J, Kim H (2004) Grafting of styrene on to Nafion membranes using supercritical CO2 impregnation for direct methanol fuel cells. J Power Sources 132:59–63

    Google Scholar 

  15. 15.

    Bae B, Yong Ha H, Kim D (2006) Nafion®-graft-polystyrene sulfonic acid membranes for direct methanol fuel cells. J Membr Sci 276:51–58

    CAS  Google Scholar 

  16. 16.

    Mohy Eldin MS, Elzatahry AA, El-Khatib KM, Hassan EA, El-Sabbah MM, Abu-Saied MA (2011) Novel grafted nafion membranes for proton-exchange membrane fuel cell applications. J Appl Polym Sci 119:120–133

    Google Scholar 

  17. 17.

    Ren S, Sun G, Li C, Song S, Xin Q, Yang X (2006) Sulfated zirconia–Nafion composite membranes for higher temperature direct methanol fuel cells. J Power Sources 157:724–726

    CAS  Google Scholar 

  18. 18.

    Shaari N, Kamarudin SK (2015) Chitosan and alginate types of bio-membrane in fuel cell application: an overview. J Power Sources 289:71–80

    CAS  Google Scholar 

  19. 19.

    Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S, Boopathi G, Aristatil G, Arun A, Madeswaran S (2016) Proton-conducting I-Carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 23:2775–2780

    Google Scholar 

  20. 20.

    Abu-Saied MA, Elzatahry AA, El-Khatib KM, Hassan EA, El-Sabbah MM, Drioli E, Mohy Eldin MS (2012) Preparation and characterization of novel grafted cellophane-phosphoric acid-doped membranes for proton exchange membrane fuel cell applications. J Appl Polym Sci 123:3710–3724

    CAS  Google Scholar 

  21. 21.

    Mohy Eldin MS, Abd Elmageed MH, Omer AM, Tamer TM, Yossuf ME, Khalifa RE (2016) Development of novel phosphorylated cellulose acetate polyelectrolyte membranes for direct methanol fuel cell application. Int J Electrochem Sci 11:3467–3482

    CAS  Google Scholar 

  22. 22.

    Mohy Eldin MS, Abu-Saied MA, Elzatahry AA, El-Khatib KM, Hassan EA, El-Sabbah MM (2011) Novel acid-base polyvinyl chloride-doped ortho-phosphoric acid membranes for fuel cell applications. Int J Electrochem Sci 6:5417–5429

    CAS  Google Scholar 

  23. 23.

    Molláa S, Compaña V (2011) Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. J Membr Sci 372:191–200

    Google Scholar 

  24. 24.

    Pivovar BS, Wang Y, Cussler EL (1999) Pervaporation membranes in direct methanol fuel cells. J Membr Sci 154:155–162

    CAS  Google Scholar 

  25. 25.

    Chanthad C, Wootthi kanok khan J (2006) Effects of crosslinking time and amount of sulfophthalic acid on properties of the sulfonated poly(vinyl alcohol) membrane. J Appl Polym Sci 101:1931–1936

    CAS  Google Scholar 

  26. 26.

    Boroglu MS, Cavus S, Boz I, Ata A (2011) Synthesis and characterization of poly(vinyl alcohol) proton exchange membranes modified with 4,4-diaminodiphenylether-2,2-disulfonic acid. eXPRESS Polymer Letters 5:470–478

  27. 27.

    Merle G, Hosseiny SS, Wessling M, Nijmeijer K (2012) New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells. J Membr Sci 409–410:191–199

    Google Scholar 

  28. 28.

    Beydaghi H, Javanbakht M, Badiei A (2014) Cross-linked poly(vinyl alcohol)/sulfonated nanoporous silica hybrid membranes for proton exchange membrane fuel cell. J Nanostruct Chem 4:97–103

    Google Scholar 

  29. 29.

    Gopi KH, Dhavale V, Bhat SD (2019) Development of polyvinyl alcohol/chitosan blend anion exchange membrane with mono and di quaternizing agents for application in alkaline polymer electrolyte fuel cells. Mater Sci Energy Technol 2:194–202

    Google Scholar 

  30. 30.

    Rudra R, Kumar V, Kundu PP (2015) Acid catalysed cross-linking of polyvinyl alcohol (PVA) by glutaraldehyde: effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells. RSC Adv 5:83436–83447

    CAS  Google Scholar 

  31. 31.

    Selvin PC, Perumal P, Selvasekarapandian S, Monisha S, Boopathi G, Chandra MVL (2018) Study of proton-conducting polymer electrolyte based on K-carrageenan and NH4SCN for electrochemical devices. Ionics 24:3535–3542

    Google Scholar 

  32. 32.

    Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Hemalatha R, Boopathi G (2018) Synthesis and characterization of bio-polymer electrolyte based on iota-carrageenan with ammonium thiocyanate and its applications. J Solid State Electrochem 22:3209–3223

    CAS  Google Scholar 

  33. 33.

    Chitra R, Sathya P, Selvasekarapandian S, Monisha S, Moniha V, Meyvel S (2019) Synthesis and characterization of iota-carrageenan solid biopolymer electrolytes for electrochemical applications. Ionics 25:2147–2157

    CAS  Google Scholar 

  34. 34.

    Manguiam VLR, Cruz NA, Adornado AP (2019) κ-Carrageenan and aluminum oxide as a potential replacement for industry-standard materials in proton exchange membrane fuel cell (PEMFC) fabrication. IOP Conf Ser Earth Environ Sci 219:012027

    Google Scholar 

  35. 35.

    Sukhlaaieda W, Riyajan S-A (2013) Synthesis and properties of carrageenan grafted copolymer with poly(vinyl alcohol). Carbohydr Polym 98:677–685

    Google Scholar 

  36. 36.

    Dafader NC, Manir MS, Alam MF, Swapna SP, Akter T, Huq D (2015) Sop Trans Appl Chem 2:1–12

    Google Scholar 

  37. 37.

    Islam T, Dafader NC, Poddar P, Khan NS, Chowdhury AMS (2016) Studies on swelling and absorption properties of the γ-irradiated polyvinyl alcohol (PVA)/Kappa-Carrageenan blend hydrogels. J Adv Chem Eng 6:153–158

    Google Scholar 

  38. 38.

    Bajpai SK, Daheriya P, Ahuja S, Gupta K (2016) Water absorption and antimicrobial behaviour of physically cross-linked poly (vinyl alcohol)/carrageenan films loaded with minocycline. Des Monomers Polym 19:630–642

    CAS  Google Scholar 

  39. 39.

    Meng F, Zhang Y, Xiong Z, Wang G, Li F, Zhang L (2018) Mechanical, hydrophobic and thermal properties of an organic-inorganic hybrid carrageenan-polyvinyl alcohol composite film. Compos Part B 143:1–8

    CAS  Google Scholar 

  40. 40.

    Yang CC, Chien WC, Li YJ (2010) Direct methanol fuel cell based on poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/nt–TiO2/PSSA) composite polymer membrane. J Power Sources 195:3407–3415

    CAS  Google Scholar 

  41. 41.

    Mohy Eldin MS, Soliman EA, Hassan EA, Abu-Saied MA (2009) Immobilized metal ions cellophane–PGMA-grafted membranes for affinity separation of β-galactosidase enzyme. I. Preparation and characterization. J Appl Polym Sci 111:2647–2656

    Google Scholar 

  42. 42.

    Mohy Eldin MS, Elzatahry AA, El-Khatib KM, Hassan EA, El-Sabbah MM, Abu-Saied MA (2011) Novel grafted Nafion membranes for proton-exchange membrane fuel cell applications. J Appl Polym Sci 119:120–133

    Google Scholar 

  43. 43.

    Figueiredo KCS, Alves TLM, Borges CP (2009) Poly (vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. J Appl Polym Sci 111:3074–3080

    CAS  Google Scholar 

  44. 44.

    Marin E, Rojas J (2015) Preparation and characterization of crosslinked poly (vinyl) alcohol films with waterproof properties. Int J Pharm Pharm Sci 7:242–248

    CAS  Google Scholar 

  45. 45.

    Distantina S, Rochmadi Fahrurrozi M, Wiratni (2013) Preparation and characterization of glutaraldehyde-crosslinked kappa carrageenan hydrogel. Eng J 17:57–66

    Google Scholar 

  46. 46.

    Distantina S, Rochmadi, Fahrurrozi M, Wiratni (2012) Preparation of hydrogel based on glutaraldehyde-crosslinked carrageenan. In: 2012 3rd international conference on chemistry and chemical engineering IPCBEE 38 (2012) © (2012) IACSIT Press, Singapore

  47. 47.

    Chandy T, Sharma CP (1992) Prostaglandin E1-immobilized poly(vinyl alcohol)-blended chitosan membranes: Blood compatibility and permeability properties. J Appl Polym Sci 44:2145–2156

    CAS  Google Scholar 

  48. 48.

    Pereira L, Amado AM, Critchley AT, van de Velde F, Ribeiro-Claro PJA (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocolloids 23:1903–1909

    CAS  Google Scholar 

  49. 49.

    Pereira L (2004) Estudos em macroalgas carragenófitas (Gigartinales, Rhodophyceae) da costa portuguesa-aspectos ecológicos, bioquímicos e citológicos [Ph.D. thesis], FCTUC, University of Coimbra

  50. 50.

    Zhanga W, Xuea Z, Yana M, Liua J, Xiaa Y (2016) Effect of epichlorohydrin on the wet spinning of carrageenan fibres under optimal parameter conditions. Carbohydr Polym 150:232–240

    Google Scholar 

  51. 51.

    Amine ABA (2007) Preparation of polyelectrolyte membranes and electrodes for direct methanol fuel cells [M.Sc. thesis], Faculty of Science Al-Azhar University, Cairo

Download references

Author information



Corresponding author

Correspondence to M. S. Mohy Eldin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohy Eldin, M.S., Farag, H.A., Tamer, T.M. et al. Development of novel iota carrageenan-g-polyvinyl alcohol polyelectrolyte membranes for direct methanol fuel cell application. Polym. Bull. 77, 4895–4916 (2020).

Download citation


  • PVA
  • Iota carrageenan
  • Ionic and chemical cross-linking
  • Polyelectrolyte membranes
  • Ion-exchange capacity
  • Methanol permeability
  • Direct methanol fuel cell