Preparation of multitarget Fusarium toxin (zearalenone, deoxynivalenol, T-2, and HT-2) immunoaffinity columns using poly(glycidyl methacrylate–divinylbenzene) as a matrix

Abstract

This study aimed to establish a purifying immunoaffinity column (IAC) for four kinds of Fusarium toxins (zearalenone, deoxynivalenol, T-2, and HT-2) simultaneously using poly-glycidyl methacrylate–divinylbenzene [P(GMA–DVB)] as the column matrix. The P(GMA–DVB) microsphere was synthesized using glycidyl methacrylate (GMA) and diethylbenzene (DVB) at an optimal polymerization temperature of 80 °C, the initiator 2,2′-azodiisobutyronitrile concentration of 2.50 g/mL H2O, and the DVB-to-GMA ratio of 3:5 (wt.). The polymerized P(GMA–DVB) microspheres were modified with 1,6-hexanediamine, activated with glutaraldehyde, and coupled with the four toxin monoclonal antibodies. The coupling rate of the activated resin was calculated to be 95.95%. The maximum capacity of the IACs was 264 ng deoxynivalenol, 231 ng T-2, 210 ng HT-2, and 292 ng zearalenone. After eight uses, the maximum capacity had no obvious decrease. The recovery of the four Fusarium toxins on the P(GMA–DVB) IAC was 70.03–85.39% in flour, with the relative standard deviations of 4.67–15.93%. The IACs were applied to the actual flour samples.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Bosch U, Mirocha CJ, Abbas HK et al (1989) Toxicity and toxin production by Fusarium isolates from New Zealand. Mycopathologia 108:73–79

    Article  CAS  Google Scholar 

  2. 2.

    Yazar S, Omurtag GZ (2008) Fumonisins, trichothecenes and zearalenone in cereals. Int J Mol Sci 9:2062–2090. https://doi.org/10.3390/ijms9112062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. 3.

    Nesic K, Ivanovic S, Nesic V (2014) Fusarial toxins: secondary metabolites of Fusarium fungi. Rev Environ Contam Toxicol 228:101–120. https://doi.org/10.1007/978-3-319-01619-1_5

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Alshannaq A, Yu JH (2017) Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health 14:632. https://doi.org/10.3390/ijerph14060632

    Article  PubMed Central  CAS  Google Scholar 

  5. 5.

    Chilaka CA, De Boevre M, Atanda OO et al (2017) The status of Fusarium mycotoxins in sub-Saharan Africa: a review of emerging trends and post-harvest mitigation strategies towards food control. Toxins (Basel) 9:19. https://doi.org/10.3390/toxins9010019

    Article  CAS  Google Scholar 

  6. 6.

    Smith MC, Madec S, Pawtowski A et al (2017) Individual and combined toxicological effects of deoxynivalenol and zearalenone on human hepatocytes in in vitro chronic exposure conditions. Toxicol Lett 280:238–246. https://doi.org/10.1016/j.toxlet.2017.08.080

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Smith MC, Gheux A, Coton M et al (2018) In vitro coculture models to evaluate acute cytotoxicity of individual and combined mycotoxin exposures on Caco-2, THP-1 and HepaRG human cell lines. Chem Biol Interact 281:51–59. https://doi.org/10.1016/j.cbi.2017.12.004

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Xia S, Zhu P, Pi F et al (2017) Development of a simple and convenient cell-based electrochemical biosensor for evaluating the individual and combined toxicity of DON, ZEA, and AFB1. Biosens Bioelectron 97:345–351. https://doi.org/10.1016/j.bios.2017.06.002

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Zhou H, George S, Hay C et al (2017) Individual and combined effects of aflatoxin B1, deoxynivalenol and zearalenone on HepG2 and RAW 264.7 cell lines. Food Chem Toxicol 103:18–27. https://doi.org/10.1016/j.fct.2017.02.017

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Lin X, Guo X (2016) Advances in biosensors, chemosensors and assays for the determination of Fusarium mycotoxins. Toxins (Basel) 8:161. https://doi.org/10.3390/toxins8060161

    Article  PubMed Central  CAS  Google Scholar 

  11. 11.

    Tamura M, Takahashi A, Uyama A et al (2012) A method for multiple mycotoxin analysis in wines by solid phase extraction and multifunctional cartridge purification, and ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. Toxins (Basel) 4:476–486. https://doi.org/10.3390/toxins4060476

    Article  CAS  Google Scholar 

  12. 12.

    Li Y, Wang Y, Yang H et al (2010) Establishment of an immunoaffinity chromatography for simultaneously selective extraction of Sudan I, II, III and IV from food samples. J Chromatogr A 1217:7840–7847. https://doi.org/10.1016/j.chroma.2010.10.077

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Zhang H, Wang M, Wang Y et al (2013) Preparation and application of an immunoaffinity column based on an antibody with strong affinity and packing material with good stability. Food Addit Contam Part A-Chem Anal Control Expo Risk Assess 30:853–860. https://doi.org/10.1080/19440049.2013.789932

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Chang H, Kim W, Park JH et al (2017) The occurrence of zearalenone in South Korean feedstuffs between 2009 and 2016. Toxins (Basel) 9:223. https://doi.org/10.3390/toxins9070223

    Article  CAS  Google Scholar 

  15. 15.

    Kim DH, Hong SY, Kang JW et al (2017) Simultaneous determination of multi-mycotoxins in cereal grains collected from South Korea by LC/MS/MS. Toxins (Basel) 9:106. https://doi.org/10.3390/toxins9030106

    Article  CAS  Google Scholar 

  16. 16.

    Park J, Chang H, Kim D et al (2018) Long-term occurrence of deoxynivalenol in feed and feed raw materials with a special focus on South Korea. Toxins (Basel) 10:127. https://doi.org/10.3390/toxins10030127

    Article  CAS  Google Scholar 

  17. 17.

    Hu K, Zhao G, Liu J et al (2018) Simultaneous quantification of three alkylated-purine adducts in human urine using sulfonic acid poly(glycidyl methacrylatedivinylbenzene)-based microspheres as sorbent combined with LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 1081–1082:15–24. https://doi.org/10.1016/j.jchromb.2018.02.028

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Moldoveanu SC, David V (2017) Selection of the HPLC method in chemical analysis, 1st edn. Elsevier, Amsterdam, pp 55–85

    Google Scholar 

  19. 19.

    Van Emon JM (2006) Immunoassay and other bioanalytical techniques, 1st edn. CRC Press, Boca Raton, pp 1–36

    Google Scholar 

  20. 20.

    Wang R, Zhang Y, Ma G et al (2006) Modification of poly(glycidyl methacrylate–divinylbenzene) porous microspheres with polyethylene glycol and their adsorption property of protein. Colloids Surf B Biointerfaces 51:93–99. https://doi.org/10.1016/j.colsurfb.2006.05.015

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Zhang S, Zhang J, Horváth C (2002) Capillary electrochromatography of proteins with polymer-based strong-cation-exchanger microspheres. J Chromatogra A 965:83–92

    Article  CAS  Google Scholar 

  22. 22.

    Lubbad SH (2017) Wide-Bore columns of poly(glycidyl methacrylate-co-divinylbenzene)-based monolithic beds for reversed-phase and anion-exchange chromatographic separation of biomolecules. J Chromatogr Sci 55:205–213. https://doi.org/10.1093/chromsci/bmw170

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Zhang Z, Wang J, Hui L et al (2012) Poly(glycidyl methacrylate–divinylbenzene) based immobilized pH gradient capillary isoelectric focusing coupling with MALDI mass spectrometry for enhanced neuropeptide analysis. Electrophoresis 33(4):661–665. https://doi.org/10.1002/elps.201100447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Liu J, Wang Y, Li W et al (2016) Octadecylamine-modified poly(glycidylmethacrylate–divinylbenzene) stationary phase for HPLC determination of N-nitrosamines. Talanta 160:298–305. https://doi.org/10.1016/j.talanta.2016.07.021

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Liu J, Wang Y, Cheng H et al (2016) High-capacity anion exchangers based on poly(glycidylmethacrylate–divinylbenzene) microspheres for ion chromatography. Talanta 159:272–279. https://doi.org/10.1016/j.talanta.2016.06.034

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Zhang JN, Ding K, Han T et al (2017) Preparation of multi-target Fusarium toxins (zearalenone, deoxynivalenol, T-2, and HT-2 toxins) immunoaffinity column using polystyrene–divinylbenzene as matrix. Food Anal Methods 10:2053–2059. https://doi.org/10.1007/s12161-016-0764-3

    Article  CAS  Google Scholar 

  27. 27.

    Islam A, Zaidi N, Ahmad H et al (2015) Amine-functionalized mesoporous polymer as potential sorbent for nickel preconcentration from electroplating wastewater. Environ Sci Pollut Res Int 10:7716–7725. https://doi.org/10.1007/s11356-014-4011-4

    Article  CAS  Google Scholar 

  28. 28.

    Zhang S, Huang X, Yao N et al (2002) Preparation of monodisperse porous polymethacrylate microspheres and their application in the capillary electrochromatography of macrolide antibiotics. J Chromatogr A 948(1–2):193–201

    Article  CAS  Google Scholar 

  29. 29.

    Park KY, Jeong WW, Suh KD (2003) Monodisperse crosslinked microsphere polymer particles by dispersion copolymerization of glycidyl methacrylate and divinylbenzene. J Macromol Sci Part A 6:617–627

    Article  CAS  Google Scholar 

  30. 30.

    Ma W, Xu HX, Liu ZZ et al (2010) Optimization of preparation of poly (glycidyl methacrylate–divinylbenzene) monolithic column with orthogonal experiments for separation of small molecules. Se Pu 2:175–179

    Google Scholar 

  31. 31.

    Xie J, Peng T, He JL et al (2015) Preparation and characterization of an immunoaffinity column for the selective extraction of aflatoxin B1 in 13 kinds of foodstuffs. J Chromatogr B Analyt Technol Biomed Life Sci 998–999:50–56. https://doi.org/10.1016/j.jchromb.2015.06.022

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Arcella D, Gergelova P, Innocenti ML et al (2017) Human and animal dietary exposure to T-2 and HT-2 toxin. Efsa J 15:4972. https://doi.org/10.2903/j.efsa.2017.4972

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Beijing Natural Science Fund (KZ201710020014), the National Natural Science Foundation of China (31601658), and the Beijing Natural Science Fund (14L00184).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ke Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, J., Ding, K. et al. Preparation of multitarget Fusarium toxin (zearalenone, deoxynivalenol, T-2, and HT-2) immunoaffinity columns using poly(glycidyl methacrylate–divinylbenzene) as a matrix. Polym. Bull. 77, 4507–4522 (2020). https://doi.org/10.1007/s00289-019-02991-w

Download citation

Keywords

  • Fusarium toxins
  • Glycidyl methacrylate–divinylbenzene
  • Immunoaffinity columns