Preparation and application of catalytic polymeric membranes based on PVDF/cobalt nanoparticles supported on MWCNTs


In this study, preparation, characterization and application of catalytic polymeric membranes incorporated with cobalt nanoparticles-decorated multi-walled carbon nanotubes (Co/MWCNTs) have been reported as an efficient catalyst for reduction of 4-nitrophenol to 4-minophenol. A facile and green method was used to synthesize Co/MWCNTs by two reducing agents, including sodium borohydride (NaBH4) and l-ascorbic acid, carried out at room temperature. Fourier transform infrared, differential scanning calorimetry, vibrating sample magnetometer, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy analyses were employed to characterize the structure and morphology of the prepared catalyst. Catalytic polymeric membranes were prepared through the phase inversion method by embedding the Co/MWCNTs with three different concentrations (1%, 2% and 3% wt%) in polyvinylidene fluoride matrix. Furthermore, the composition and morphology of the nanocompsite membranes were characterized by energy-dispersive X-ray spectrograph and SEM analyses. To investigate the catalytic activity of the prepared membranes, they were applied in a flow-through reactor, showing good catalytic activity toward the reduction of 4-nitrophenol with NaBH4 aqueous solution. After each run, the solution was analyzed by ultraviolet–visible spectrophotometer, and the conversion of the reactant was calculated. The best result was observed for the catalytic membrane containing 3% of Co/MWCNTs, exhibiting 100% conversion by applying two runs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Marcano JGS, Tsotsis TT (2002) Catalytic membranes and membrane reactors. Wiley, New York

    Google Scholar 

  2. 2.

    Motamedhashemi MY, Egolfopoulos F, Tsotsis T (2011) Application of a flow-through catalytic membrane reactor (FTCMR) for the destruction of a chemical warfare simulant. J Membr Sci 376(1):119–131

    CAS  Google Scholar 

  3. 3.

    Ozdemir SS, Buonomenna MG, Drioli E (2006) Catalytic polymeric membranes: preparation and application. Appl Catal A Gen 307(2):167–183

    CAS  Google Scholar 

  4. 4.

    Vankelecom IF (2002) Polymeric membranes in catalytic reactors. Chem Rev 102(10):3779–3810

    PubMed  CAS  Google Scholar 

  5. 5.

    Westermann T, Melin T (2009) Flow-through catalytic membrane reactors—principles and applications. Chem Eng Process Intensif 48(1):17–28

    CAS  Google Scholar 

  6. 6.

    Armor J (1989) Catalysis with permselective inorganic membranes. Appl Catal 49(1):1–25

    CAS  Google Scholar 

  7. 7.

    Bottino A, Capannelli G, Comite A, Di Felice R (2002) Polymeric and ceramic membranes in three-phase catalytic membrane reactors for the hydrogenation of methylenecyclohexane. Desalination 144(1):411–416

    CAS  Google Scholar 

  8. 8.

    Miachon S, Dalmon J-A (2004) Catalysis in membrane reactors: What about the catalyst? Top Catal 29(1–2):59–65

    CAS  Google Scholar 

  9. 9.

    Domènech B, Muñoz M, Muraviev D, Macanás J (2012) Catalytic membranes with palladium nanoparticles: from tailored polymer to catalytic applications. Catal Today 193(1):158–164

    Google Scholar 

  10. 10.

    Fayyazi F, Feijani EA, Mahdavi H (2015) Chemically modified polysulfone membrane containing palladium nanoparticles: preparation, characterization and application as an efficient catalytic membrane for Suzuki reaction. Chem Eng Sci 134:549–554

    CAS  Google Scholar 

  11. 11.

    Zaman J, Chakma A (1994) Inorganic membrane reactors. J Membr Sci 92(1):1–28

    CAS  Google Scholar 

  12. 12.

    Gao H, Xu Y, Liao S, Liu R, Liu J, Li D, Yu D, Zhao Y, Fan Y (1995) Catalytic polymeric hollow–fiber reactors for the selective hydrogenation of conjugated dienes. J Membr Sci 106(3):213–219

    CAS  Google Scholar 

  13. 13.

    Gu Y, Favier I, Pradel C, Gin DL, Lahitte J-F, Noble RD, Gómez M, Remigy J-C (2015) High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki–Miyaura cross-coupling reaction. J Membr Sci 492:331–339

    CAS  Google Scholar 

  14. 14.

    Malik T, Razzaq H, Razzaque S, Nawaz H, Siddiqa A, Siddiq M, Qaisar S (2019) Design and synthesis of polymeric membranes using water-soluble pore formers: an overview. Polym Bull.

    Article  Google Scholar 

  15. 15.

    Macanas J, Ouyang L, Bruening ML, Muñoz M, Remigy J-C, Lahitte J-F (2010) Development of polymeric hollow fiber membranes containing catalytic metal nanoparticles. Catal Today 156(3):181–186

    CAS  Google Scholar 

  16. 16.

    Alpatova A, Meshref M, McPhedran KN, El-Din MG (2015) Composite polyvinylidene fluoride (PVDF) membrane impregnated with Fe2O3 nanoparticles and multiwalled carbon nanotubes for catalytic degradation of organic contaminants. J Membr Sci 490:227–235

    CAS  Google Scholar 

  17. 17.

    Molinari R, Poerio T (2009) Preparation, characterisation and testing of catalytic polymeric membranes in the oxidation of benzene to phenol. Appl Catal A Gen 358(2):119–128

    CAS  Google Scholar 

  18. 18.

    Wang X, Chen C, Liu H, Ma J (2008) Preparation and characterization of PAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid. Water Res 42(18):4656–4664

    PubMed  CAS  Google Scholar 

  19. 19.

    Wang Z, Chen X, Li K, Bi S, Wu C, Chen L (2015) Preparation and catalytic property of PVDF composite membrane with polymeric spheres decorated by Pd nanoparticles in membrane pores. J Membr Sci 496:95–107

    CAS  Google Scholar 

  20. 20.

    Yan L, Li YS, Xiang CB (2005) Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer 46(18):7701–7706

    CAS  Google Scholar 

  21. 21.

    Bhatt AS, Bhat DK (2012) Influence of nanoscale NiO on magnetic and electrochemical behavior of PVDF-based polymer nanocomposites. Polym Bull 68(1):253–261

    CAS  Google Scholar 

  22. 22.

    Chen X, Wang Z, Bi S, Li K, Du R, Wu C, Chen L (2016) Combining catalysis and separation on a PVDF/Ag composite membrane allows timely separation of products during reaction process. Chem Eng J 295:518–529

    CAS  Google Scholar 

  23. 23.

    Mahdavi H, Panahi MKS, Shahalizade T (2018) Preparation and application of hyperbranched polymer-modified polyethersulfone membrane containing Ni–Pd–Sn-coated MWCNT for catalytic aryl halide coupling reactions. Polym Bull 75(12):5677–5694

    CAS  Google Scholar 

  24. 24.

    White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ (2009) Supported metal nanoparticles on porous materials. Methods and applications. Chem Soc Rev 38(2):481–494

    PubMed  CAS  Google Scholar 

  25. 25.

    Mahdavi H, Rahimi A, Alam LA (2017) Preparation, characterization and performance study of modified PVDF-based membranes containing palladium nanoparticle-modified graphene hierarchical nanostructures: as a new catalytic nanocomposite membrane. Polym Bull 74(9):3557–3577

    CAS  Google Scholar 

  26. 26.

    Safari J, Gandomi-Ravandi S (2013) Environmentally friendly synthesis of 2-aryl-2, 3-dihydroquinazolin-4 (1H)-ones by novel Co-CNTs as recoverable catalysts. C R Chim 16(12):1158–1164

    CAS  Google Scholar 

  27. 27.

    Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A Gen 253(2):337–358

    CAS  Google Scholar 

  28. 28.

    Zhao L, Wang Z-B, Sui X-L, Yin G-P (2014) Effect of multiwalled carbon nanotubes with different specific surface areas on the stability of supported Pt catalysts. J Power Sources 245:637–643

    CAS  Google Scholar 

  29. 29.

    Zhang Y (2015) Carbon nanotubes/polyacrylic acid coating materials prepared by in situ polymerization technique. Polym Bull 72(10):2519–2526

    CAS  Google Scholar 

  30. 30.

    Maron G, Noremberg B, Alano J, Pereira F, Deon V, Santos R, Freire V, Valentini A, Carreno NLV (2018) Carbon fiber/epoxy composites: effect of zinc sulphide coated carbon nanotube on thermal and mechanical properties. Polym Bull 75(4):1619–1633

    CAS  Google Scholar 

  31. 31.

    Mahdavi H, Rahimi A, Shahalizade T (2016) Catalytic polymeric membranes with palladium nanoparticle/multi-wall carbon nanotubes as hierarchical nanofillers: preparation, characterization and application. J Polym Res 23(3):1–12

    Google Scholar 

  32. 32.

    Wu C, Chen X, He Z (2018) Polymer/silica hybrid hollow nanoparticles with channels and thermo-responsive gatekeepers for drug storage and release. Colloid Polym Sci 296(12):1961–1969

    CAS  Google Scholar 

  33. 33.

    Pandey S, Mishra SB (2014) Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohydr Polym 113:525–531

    PubMed  CAS  Google Scholar 

  34. 34.

    Krishna R, Fernandes DM, Dias C, Ventura J, Ramana EV, Freire C, Titus E (2015) Novel synthesis of Ag@ Co/RGO nanocomposite and its high catalytic activity towards hydrogenation of 4-nitrophenol to 4-aminophenol. Int J Hydrog Energy 40(14):4996–5005

    CAS  Google Scholar 

  35. 35.

    Mahdavi H, Heidari AA (2018) Chelated palladium nanoparticles on the surface of plasma-treated polyethersulfone membrane for an efficient catalytic reduction of p-nitrophenol. Polym Adv Technol 29(2):989–1001

    CAS  Google Scholar 

  36. 36.

    Chen R, Jiang Y, Xing W, Jin W (2011) Fabrication and catalytic properties of palladium nanoparticles deposited on a silanized asymmetric ceramic support. Ind Eng Chem Res 50(8):4405–4411

    CAS  Google Scholar 

  37. 37.

    Mohl M, Kónya Z, Kukovecz Á, Kiricsi I (2008) Functionalization of multi-walled carbon nanotubes (MWCNTS). In: Vaseashta A., Mihailescu IN (eds) Functionalized nanoscale materials, devices and systems. NATO science for peace and security series B: physics and biophysics. Springer, Dordrecht, pp 365–368.

    Google Scholar 

  38. 38.

    Mahdavi H, Rahimi A, Shahalizade T (2016) Catalytic polymeric membranes with palladium nanoparticle/multi-wall carbon nanotubes as hierarchical nanofillers: preparation, characterization and application. J Polym Res 23(3):39

    Google Scholar 

  39. 39.

    Vollath D (2008) An introduction to synthesis, properties and application. Management 7(6):865–870

    Google Scholar 

  40. 40.

    Bhatt AS, Bhat DK, Santosh M (2011) Crystallinity, conductivity, and magnetic properties of PVDF-Fe3O4 composite films. J Appl Polym Sci 119(2):968–972

    CAS  Google Scholar 

  41. 41.

    Wang Y-J, Kim D (2007) Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2 nanocomposite polymer electrolytes. Electrochim Acta 52(9):3181–3189

    CAS  Google Scholar 

  42. 42.

    Nunes-Pereira J, Sharma P, Fernandes L, Oliveira J, Moreira J, Sharma R, Lanceros-Mendez S (2018) Poly(vinylidene fluoride) composites with carbon nanotubes decorated with metal nanoparticles. Compos Part B Eng 142:1–8

    CAS  Google Scholar 

  43. 43.

    Wu L, Sun J, Wang Q (2006) Poly (vinylidene fluoride)/polyethersulfone blend membranes: effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology. J Membr Sci 285(1–2):290–298

    CAS  Google Scholar 

  44. 44.

    Huang J, Yan C, Huang K (2009) Removal of p-nitrophenol by a water-compatible hypercrosslinked resin functionalized with formaldehyde carbonyl groups and XAD-4 in aqueous solution: a comparative study. J Colloid Interface Sci 332(1):60–64

    PubMed  CAS  Google Scholar 

  45. 45.

    Wang H, Dong Z, Na C (2013) Hierarchical carbon nanotube membrane-supported gold nanoparticles for rapid catalytic reduction of p-nitrophenol. ACS Sustain Chem Eng 1(7):746–752

    CAS  Google Scholar 

  46. 46.

    Bolisetty S, Arcari M, Adamcik J, Mezzenga R (2015) Hybrid amyloid membranes for continuous flow catalysis. Langmuir 31(51):13867–13873

    PubMed  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hossein Mahdavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, H., Sajedi, M., Shahalizade, T. et al. Preparation and application of catalytic polymeric membranes based on PVDF/cobalt nanoparticles supported on MWCNTs. Polym. Bull. 77, 4489–4505 (2020).

Download citation