Improvement of antibacterial and biocompatibility properties of electrospray biopolymer films by ZnO and MCM-41

Abstract

This study aims the improvement of antibacterial and biocompatibility properties of electrospray ternary blends of chitosan/poly(ethylene glycol)/hyaluronic acid. It conserves microscale particle structure even after incorporating zinc oxide (ZnO), the zeolite Mobil Composition of Matter No. 41 (MCM41) and penicillin G during this technique. Three different electrospray (ESP) blend compositions (ESPI, ESPII and ESPIII) have been produced in order to improve both antibacterial activity against to both gram-positive and gram-negative bacteria and biocompatibility. Results of FTIR spectroscopy and microscopy verified with SEM, EDS and AFM analyses. Hyaluronic acid surface has been specified definitely through ZnO-based ESPI surface composed of heterogeneously dispersed microparticles. Surface structures of ESPII and ESPIII have more homogenously dispersed microparticles as hill–valley surface by the aid of MCM 41-PEN. Antibacterial activity has been performed by Kirby–Bauer method. ESPI has good antibacterial activity against both gram-positive (S. aureus and S. epidermidis) and gram-negative bacteria (E. cloacea). Each electrospray film displayed good biocompatibility against to mouse fibroblast cell line L929 (ATTC number CCL-1). The highest amount of cell proliferation has been detected on ESPIII surface.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Parhizkar M, Reardon P, Knowles J, Browning R, Stride E, Pedley R, Grego T, Edirisinghe M (2017) Performance of novel high throughput multi electrospray systems for forming of polymeric micro/nanoparticles. Mater Des 126:73–84

    CAS  Article  Google Scholar 

  2. 2.

    Sridhar R, Ramakrishna S (2013) Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter 3(3):e24281

    Article  Google Scholar 

  3. 3.

    Winter JO, Gang R, Wyslouzil B, Duong AD, Mahajan K (2017) Methods for producing nanoparticles and using same. Google Patents

  4. 4.

    Sridhar R, Lakshminarayanan R, Madhaiyan K, Barathi VA, Lim KHC, Ramakrishna S (2015) Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 44(3):790–814

    CAS  Article  Google Scholar 

  5. 5.

    Sosnik A (2014) Production of drug-loaded polymeric nanoparticles by electrospraying technology. J Biomed Nanotechnol 10(9):2200–2217

    CAS  Article  Google Scholar 

  6. 6.

    Li A, Luo Q, Park SJ, Cooks RG (2014) Synthesis and catalytic reactions of nanoparticles formed by electrospray ionization of coinage metals. Angew Chem Int Ed 53(12):3147–3150

    CAS  Article  Google Scholar 

  7. 7.

    Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B (2017) Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today 22:1825–1834

    CAS  Article  Google Scholar 

  8. 8.

    Oprea O, Andronescu E, Ficai D, Ficai A, Oktar N, F, Yetmez M, (2014) ZnO applications and challenges. Curr Org Chem 18(2):192–203

    CAS  Article  Google Scholar 

  9. 9.

    Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antibacterial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284

    CAS  Article  Google Scholar 

  10. 10.

    Choina J, Bagabas A, Fischer C, Flechsig G-U, Kosslick H, Alshammari A, Schulz A (2015) The influence of the textural properties of ZnO nanoparticles on adsorption and photocatalytic remediation of water from pharmaceuticals. Catal Today 241:47–54

    CAS  Article  Google Scholar 

  11. 11.

    Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7(3):219–242

    CAS  Article  Google Scholar 

  12. 12.

    Baek S, Joo SH, Kumar N, Toborek M (2017) Antibacterial effect and toxicity pathways of industrial and sunscreen ZnO nanoparticles on Escherichia coli. J Environ Chem Eng 5:3024–3032

    CAS  Article  Google Scholar 

  13. 13.

    Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7):4020–4028

    CAS  Article  Google Scholar 

  14. 14.

    Ukmar T, Planinšek O (2010) Ordered mesoporous silicates as matrices for controlled release of drugs. Acta Pharm 60(4):373–385

    CAS  Article  Google Scholar 

  15. 15.

    Gunduz O, Yetmez M, Sonmez M, Georgescu M, Alexandrescu L, Ficai A, Ficai D, Andronescu E (2015) Mesoporous materials used in medicine and environmental applications. Curr Top Med Chem 15(15):1501–1515

    CAS  Article  Google Scholar 

  16. 16.

    Suib SL (2017) A review of recent developments of mesoporous materials. Chem Rec 17(12):1169–1183

    CAS  Article  Google Scholar 

  17. 17.

    Miletto I, Paul G, Chapman S, Gatti G, Marchese L, Raja R, Gianotti E (2017) Mesoporous silica scaffolds as precursors to drive the formation of hierarchical SAPO-34 with tunable acid properties. Chem-A Eur J 23:9952–9961

    CAS  Article  Google Scholar 

  18. 18.

    Hao N, Li L, Tang F (2017) Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. Int Mater Rev 62(2):57–77

    CAS  Article  Google Scholar 

  19. 19.

    Doadrio AL, Sánchez-Montero JM, Doadrio JC, Salinas AJ, Vallet-Regí M (2017) Mesoporous silica nanoparticles as a new carrier methodology in the controlled release of the active components in a polypill. Eur J Pharm Sci 97:1–8

    CAS  Article  Google Scholar 

  20. 20.

    Ferrauto G, Carniato F, Di Gregorio E, Tei L, Botta M, Aime S (2017) Large photoacoustic effect enhancement for ICG confined inside MCM-41 mesoporous silica nanoparticles. Nanoscale 9(1):99–103

    CAS  Article  Google Scholar 

  21. 21.

    Hsia Y, Sivasubramanian M, Chen N-T, Lo L-W (2016) Mesoporous silica nanoparticles (MSNs) for cancer theranostics. In: Tan M, Wu A (eds) Nanomaterials for tumor targeting theranostics: a proactive clinical perspective, chap 5, pp 143–175. https://doi.org/10.1142/9789814635424_0005

  22. 22.

    Bharti C, Nagaich U, Pal AK, Gulati N (2015) Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig 5(3):124–133. https://doi.org/10.4103/2230-973X.160844

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Popescu S, Ardelean IL, Gudovan D, Radulescu M, Ficai D, Ficai A, Vasile BS, Andronescu E (2016) Multifunctional materials such as MCM-41/Fe3O4/folic acid as drug delivery system. Rom J Morphol Embryo 57(2):483–489

    Google Scholar 

  24. 24.

    Sönmez M, Ficai D, Ficai A, Alexandrescu L, Georgescu M, Trusca R, Gurau D, Titu MA, Andronescu E (2018) Applications of mesoporous silica in biosensing and controlled release of insulin. Int J Pharm 549(1–2):179–200

    Article  Google Scholar 

  25. 25.

    Eroglu MS, Oner ET, Mutlu EC, Bostan MS (2017) Sugar based biopolymers in nanomedicine; new emerging era for cancer imaging and therapy. Curr Top Med Chem 17(13):1507–1520

    CAS  Article  Google Scholar 

  26. 26.

    Pica A, Pica M, Ficai D, Ficai A, Florica D (2015) Incorporation of silver nanoparticles in film forming materials for long term antibacterial action. Curr Nanosci 11(6):760–769

    CAS  Article  Google Scholar 

  27. 27.

    Li X, Tsibouklis J, Weng T, Zhang B, Yin G, Feng G, Cui Y, Savina IN, Mikhalovska LI, Sandeman SR (2017) Nano carriers for drug transport across the blood–brain barrier. J Drug Target 25(1):17–28

    Article  Google Scholar 

  28. 28.

    Rafiei P, Haddadi A (2017) Docetaxel-loaded Plga and Plga-Peg nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Int J Nanomed 12:935

    CAS  Article  Google Scholar 

  29. 29.

    Bostan MS, Mutlu EC, Kazak H, Keskin SS, Oner ET, Eroglu MS (2014) Comprehensive characterization of chitosan/PEO/levan ternary blend films. Carbohyd Polym 102:993–1000

    CAS  Article  Google Scholar 

  30. 30.

    Mutlu EC, Ficai A, Ficai D, Yildirim AB, Yildirim M, Oktar FN, Demir A (2018) Chitosan/PEG/HA biocompatible patches obtained by electrospraying. Biomed Mater 13:055011

    Article  Google Scholar 

  31. 31.

    Clarke HT (2015) Chemistry of penicillin. Princeton University Press, Princeton

    Google Scholar 

  32. 32.

    Zapun A, Contreras-Martel C, Vernet T (2008) Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev 32(2):361–385

    CAS  Article  Google Scholar 

  33. 33.

    King DT, Sobhanifar S, Strynadka NC (2017) The mechanisms of resistance to β-Lactam antibiotics. Handbook of antibacterial resistance. Springer, New York, NY, pp 177–201

    Google Scholar 

  34. 34.

    Cansever Mutlu E, Ficai A, Ficai D, Birinci Yildirim A, Yildirim M, Oktar FN, Demir A (2018) Chitosan/poly (ethylene glycol)/hyaluronic acid biocompatible patches obtained by electrospraying. Biomed Mater 13(5):11. https://doi.org/10.1088/1748-605X/aad368

    Article  Google Scholar 

  35. 35.

    Yildirim G, Bal S, Gulen M, Varilci A, Budak E, Akdogan M (2012) Substrate effect on microstructure and optical performance of sputter-deposited TiO2 thin films. Cryst Res Technol 47(2):195–201

    CAS  Article  Google Scholar 

  36. 36.

    Türker H, Yıldırım AB (2015) Screening for antibacterial activity of some Turkish plants against fish pathogens: a possible alternative in the treatment of bacterial infections. Biotechnol Biotechnol Equip 29(2):281–288

    Article  Google Scholar 

  37. 37.

    Yang SJ, Chang SM, Tsai KC, Chen WS, Lin FH, Shieh MJ (2010) Effect of chitosanalginate nanoparticles and ultrasound on the efficiency of gene transfection of human cancer cells. The journal of gene medicine 12(2):168–179

    CAS  PubMed  Google Scholar 

  38. 38.

    Bauer A (1996) Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Path 45:149–158

    Google Scholar 

  39. 39.

    Montenegro J-M, Grazu V, Sukhanova A, Agarwal S, de la Fuente JM, Nabiev I, Greiner A, Parak WJ (2013) Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Adv Drug Deliv Rev 65(5):677–688

    CAS  Article  Google Scholar 

  40. 40.

    Moazeni E, Gilani K, Najafabadi AR, Reza Rouini M, Mohajel N, Amini M, Barghi MA (2012) Preparation and evaluation of inhalable itraconazole chitosan based polymeric micelles. DARU J Pharm Sci 20(1):85

    CAS  Article  Google Scholar 

  41. 41.

    Li X, Fan D, Zhu C, Ma X (2014) Effects of self-assembled fibers on the synthesis, characteristics and biomedical applications of CCAG hydrogels. J Mater Chem B 2(9):1234–1249

    CAS  Article  Google Scholar 

  42. 42.

    Chen Q, Xin ZX, Saha P, Kim JK (2017) Fabrication of chitosan/PEO nanofiber mats with mica by electrospinning. J Polym Eng 37(5):461–470

    CAS  Article  Google Scholar 

  43. 43.

    Wang Y, Ramos I, Santiago-Aviles JJ (2010) Diversity of nanofibers from electrospinning: from graphitic carbons to ternary oxides. In: Nanofibers. InTech. https://doi.org/10.5772/8149

  44. 44.

    El-Kader FA, Hakeem N, Elashmawi I, Ismail A (2013) Structural, optical and thermal characterization of ZnO nanoparticles doped in PEO/PVA blend films. Aust J Basic Appl Sci 7(10):608–619

    Google Scholar 

  45. 45.

    Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antibacterial study. Sci Technol Adv Mater 9(3):035004

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank to BAİBÜ-BAP Project division for financial supports (Project No: 2018.03.03.1295). Besides, Esra Cansever Mutlu thanks to BEYKENT UNIVERSITY BAP Project (Project No: 2018-19.BAP-18) for financial support. Also, this study was possible due to the benefit of the infrastructure of the National Centre for Micro and Nanomaterials as well as the National Centre for Food Security belonging to University Politehnica of Bucharest, Romania.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Esra Cansever Mutlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2357 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cansever Mutlu, E., Birinci Yıldırım, A., Yıldırım, M. et al. Improvement of antibacterial and biocompatibility properties of electrospray biopolymer films by ZnO and MCM-41. Polym. Bull. 77, 3657–3675 (2020). https://doi.org/10.1007/s00289-019-02937-2

Download citation

Keywords

  • Electrospray
  • HA
  • ZnO
  • MCM 41
  • Microparticles