Synthesis and characterization of electroactive bottlebrush nano-copolymers based on polystyrene and polyaniline as side chains and poly(3-(2-hydroxyethyl)thiophene) as backbone

Abstract

Electroactive bottlebrush copolymers were synthesized via grafting of polystyrene (PSt) and polyaniline (PANI) from poly(3-(2-hydroxyethyl)thiophene) backbones by atom transfer radical polymerization (ATRP) and chemical oxidation polymerization. The bromoesters were attached to the polymer chains to afford the proper macroinitiators for ATRP of PSt branches. Likewise, some other polymer chains were functionalized with antranilic acid for chemical oxidation polymerization of PANI. Electroactivity behaviors of the synthesized bottlebrushes were approved by the cyclic voltammetry, and their conductivities were determined using the four-probe technique. Thanks to the electrical conductivity and thermal stability, the synthesized bottlebrushes can be appropriate candidates for being used in various systems such as organic solar cells.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Wintermantel M, Gerle M, Fischer K, Schmidt M, Wataoka I, Urakawa H, Kajiwara K, Tsukahara Y (1996) Molecular bottlebrushes. Macromolecules 29:978

    CAS  Google Scholar 

  2. 2.

    Rzayev J (2012) Molecular bottlebrushes: new opportunities in nanomaterials fabrication. ACS Macro Lett 1:1146–1149

    CAS  Google Scholar 

  3. 3.

    Zhang B, Gröhn F, Pedersen JS, Fischer K, Schmidt M (2006) Conformation of cylindrical brushes in solution: effect of side chain length. Macromolecules 39(24):8440–8450

    CAS  Google Scholar 

  4. 4.

    Lecommandoux S, Chécot F, Borsali R, Schappacher M, Deffieux A, Brulet A, Cotton JP (2002) Effect of dense grafting on the backbone conformation of bottlebrush polymers: determination of the persistence length in solution. Macromolecules 35(23):8878–8881

    CAS  Google Scholar 

  5. 5.

    Zhang M, Müller AH (2005) Cylindrical polymer brushes. J Polym Sci Part A Polym Chem 43(16):3461–3481

    CAS  Google Scholar 

  6. 6.

    Sheiko SS, Sumerlin BS, Matyjaszewski K (2008) Cylindrical molecular brushes: synthesis, characterization, and properties. Prog Polym Sci 33(7):759–785

    CAS  Google Scholar 

  7. 7.

    Pakula T, Zhang Y, Matyjaszewski K, Lee HI, Boerner H, Qin S, Berry GC (2006) Molecular brushes as super-soft elastomers. Polymer 47(20):7198–7206

    CAS  Google Scholar 

  8. 8.

    Neugebauer D, Zhang Y, Pakula T, Sheiko SS, Matyjaszewski K (2003) Densely-grafted and double-grafted PEO brushes via ATRP. A route to soft elastomers. Macromolecules 36(18):6746–6755

    CAS  Google Scholar 

  9. 9.

    Djalali R, Li SY, Schmidt M (2002) Amphipolar core–shell cylindrical brushes as templates for the formation of gold clusters and nanowires. Macromolecules 35(11):4282–4288

    CAS  Google Scholar 

  10. 10.

    Zhang M, Estournes C, Bietsch W, Müller AHE (2004) Superparamagnetic hybrid nanocylinders. Adv Funct Mater 14(9):871–882

    CAS  Google Scholar 

  11. 11.

    Zhang M, Drechsler M, Müller AH (2004) Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core–shell cylindrical polymer brushes. Chem Mater 16(3):537–543

    CAS  Google Scholar 

  12. 12.

    Johnson JA, Lu YY, Burts AO, Lim YH, Finn MG, Koberstein JT, Turro NJ, Tirrell DA, Grubbs RH (2010) Core-clickable PEG-branch-azide bivalent-bottle-brush polymers by ROMP: grafting-through and clicking-to. J Am Chem Soc 133(3):559–566

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Li X, Prukop SL, Biswal SL, Verduzco R (2012) Surface properties of bottlebrush polymer thin films. Macromolecules 45(17):7118–7127

    CAS  Google Scholar 

  14. 14.

    Miyake GM, Piunova VA, Weitekamp RA, Grubbs RH (2012) Precisely tunable photonic crystals from rapidly self-assembling brush block copolymer blends. Angew Chem Int Ed 51(45):11246–11248

    CAS  Google Scholar 

  15. 15.

    Sun G, Cho S, Clark C, Verkhoturov SV, Eller MJ, Li A, Pavía-Jiménez A, Schweikert EA, Thackeray JW, Trefonas P, Wooley KL (2013) Nanoscopic cylindrical dual concentric and lengthwise block brush terpolymers as covalent preassembled high-resolution and high-sensitivity negative-tone photoresist materials. J Am Chem Soc 135(11):4203–4206

    CAS  PubMed  Google Scholar 

  16. 16.

    van As D, Subbiah J, Jones DJ, Wong WW (2016) Controlled synthesis of well-defined semiconducting brush polymers. Macromol Chem Phys 217(3):403–413

    Google Scholar 

  17. 17.

    Masson P, Franta E, Rempp P (1982) Synthèse et homopolymérisation de macromères de polystyrène. Makromol Chem Rapid Commun 3(7):499–504

    CAS  Google Scholar 

  18. 18.

    Rempp P, Lutz P, Masson P, Chaumont P (1985) Macromonomers: a new class of polymeric intermediates in macromolecular synthesis-II-homo-and copolymerization. Makromol Chem Macromol Chem Phys 13(S19851):47–66

    CAS  Google Scholar 

  19. 19.

    Müllner M, Müller AH (2016) Cylindrical polymer brushes: anisotropic building blocks, unimolecular templates and particulate nanocarriers. Polymer 98:389–401

    Google Scholar 

  20. 20.

    Zhang M, Müller AH (2005) Cylindrical polymer brushes. J Polym Sci Part A Polym Chem 43(16):3461–3481

    CAS  Google Scholar 

  21. 21.

    Sheiko SS, Sumerlin BS, Matyjaszewski K (2008) Cylindrical molecular brushes: synthesis, characterization, and properties. Prog Polym Sci 33(7):759–785

    CAS  Google Scholar 

  22. 22.

    Ito K, Kawaguchi S (1999) Poly (macromonomers): homo-and copolymerization. In: Branched Polymers I (ed) Roovers J. Springer, Berlin, pp 129–178

    Google Scholar 

  23. 23.

    Hadjichristidis N, Pitsikalis M, Iatrou H, Pispas S (2003) The strength of the macromonomer strategy for complex macromolecular architecture: molecular characterization, properties and applications of polymacromonomers. Macromol Rapid Commun 24(17):979–1013

    CAS  Google Scholar 

  24. 24.

    Xia Y, Kornfield JA, Grubbs RH (2009) Efficient synthesis of narrowly dispersed brush polymers via living ring-opening metathesis polymerization of macromonomers. Macromolecules 42(11):3761–3766

    CAS  Google Scholar 

  25. 25.

    Xia Y, Olsen BD, Kornfield JA, Grubbs RH (2009) Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: the importance of side chain arrangement. J Am Chem Soc 131(51):18525–18532

    CAS  PubMed  Google Scholar 

  26. 26.

    Yamada K, Miyazaki M, Ohno K, Fukuda T, Minoda M (1999) Atom transfer radical polymerization of poly (vinyl ether) macromonomers. Macromolecules 32(2):290–293

    CAS  Google Scholar 

  27. 27.

    Radzinski SC, Foster JC, Chapleski RC Jr, Troya D, Matson JB (2016) Bottlebrush polymer synthesis by ring-opening metathesis polymerization: the significance of the anchor group. J Am Chem Soc 138(22):6998–7004

    CAS  PubMed  Google Scholar 

  28. 28.

    Sumerlin BS, Neugebauer D, Matyjaszewski K (2005) Initiation efficiency in the synthesis of molecular brushes by grafting from via atom transfer radical polymerization. Macromolecules 38(3):702–708

    CAS  Google Scholar 

  29. 29.

    Neugebauer D, Sumerlin BS, Matyjaszewski K, Goodhart B, Sheiko SS (2004) How dense are cylindrical brushes grafted from a multifunctional macroinitiator? Polymer 45(24):8173–8179

    CAS  Google Scholar 

  30. 30.

    Börner HG, Duran D, Matyjaszewski K, da Silva M, Sheiko SS (2002) Synthesis of molecular brushes with gradient in grafting density by atom transfer polymerization. Macromolecules 35(9):3387–3394

    Google Scholar 

  31. 31.

    Huang K, Rzayev J (2009) Well-defined organic nanotubes from multicomponent bottlebrush copolymers. J Am Chem Soc 131(19):6880–6885

    CAS  PubMed  Google Scholar 

  32. 32.

    Bolton J, Rzayev J (2014) Synthesis and melt self-assembly of PS–PMMA–PLA triblock bottlebrush copolymers. Macromolecules 47(9):2864–2874

    CAS  Google Scholar 

  33. 33.

    Schappacher M, Deffieux A (2000) New polymer chain architecture: synthesis and characterization of star polymers with comb polystyrene branches. Macromolecules 33(20):7371–7377

    CAS  Google Scholar 

  34. 34.

    Uhrig D, Mays JW (2002) Synthesis of combs, centipedes, and barbwires: poly (isoprene-graft-styrene) regular multigraft copolymers with trifunctional, tetrafunctional, and hexafunctional branch points. Macromolecules 35(19):7182–7190

    CAS  Google Scholar 

  35. 35.

    Iatrou H, Mays JW, Hadjichristidis N (1998) Regular comb polystyrenes and graft polyisoprene/polystyrene copolymers with double branches (“centipedes”). Quality of (1, 3-phenylene) bis (3-methyl-1-phenylpentylidene) dilithium initiator in the presence of polar additives. Macromolecules 31(19):6697–6701

    CAS  Google Scholar 

  36. 36.

    Ong BS, Wu Y, Li Y (2006) Organic semiconductors based on polythiophene and indolo[3,2-b]carbazole. In: Klauk H (ed) Organic electronics. Wiley, Weinheim

    Google Scholar 

  37. 37.

    Shin SI, Kwon JH, Kang H, Ju BK (2008) Solution-processed 6, 13-bis (triisopropylsilylethynyl)(TIPS) pentacene thin-film transistors with a polymer dielectric on a flexible substrate. Semicond Sci Technol 23(8):085009

    Google Scholar 

  38. 38.

    Li L, Ling QD, Lim SL, Tan YP, Zhu C, Chan DSH, Kang ET, Neoh KG (2007) A flexible polymer memory device. Org Electron 8(4):401–406

    CAS  Google Scholar 

  39. 39.

    Agbolaghi S, Abbasi F, Gheybi H (2016) High efficient and stabilized photovoltaics via morphology manipulating in active layer by rod–coil block copolymers comprising different hydrophilic to hydrophobic dielectric blocks. Eur Polymer J 84:465–480

    CAS  Google Scholar 

  40. 40.

    Wang M, Zou S, Guerin G, Shen L, Deng K, Jones M, Walker GC, Scholes GD, Winnik MA (2008) A water-soluble pH-responsive molecular brush of poly (N,N-dimethylaminoethyl methacrylate) grafted polythiophene. Macromolecules 41(19):6993–7002

    CAS  Google Scholar 

  41. 41.

    Sarvari R, Sattari S, Massoumi B, Agbolaghi S, Beygi-Khosrowshahi Y, Kahaie-Khosrowshahi A (2017) Composite electrospun nanofibers of reduced graphene oxide grafted with poly (3-dodecylthiophene) and poly (3-thiophene ethanol) and blended with polycaprolactone. J Biomater Sci Polym Ed 28(15):1740–1761

    CAS  PubMed  Google Scholar 

  42. 42.

    Sarvari R, Akbari-Alanjaraghi M, Massoumi B, Beygi-Khosrowshahi Y, Agbolaghi S (2017) Conductive and biodegradable scaffolds based on a five-arm and functionalized star-like polyaniline–polycaprolactone copolymer with ad-glucose core. New J Chem 41(14):6371–6384

    CAS  Google Scholar 

  43. 43.

    Massoumi B, Sarvari R, Agbolaghi S (2018) Biodegradable and conductive hyperbranched terpolymers based on aliphatic polyester, poly (D, L-lactide), and polyaniline used as scaffold in tissue engineering. Int J Polym Mater Polym Biomater 67(13):808–821

    CAS  Google Scholar 

  44. 44.

    Bolton J, Bailey TS, Rzayev J (2011) Large pore size nanoporous materials from the self-assembly of asymmetric bottlebrush block copolymers. Nano Lett 11(3):998–1001

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from Payame Noor University is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raana Sarvari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Massoumi, B., Sorkhishams, N., Sarvari, R. et al. Synthesis and characterization of electroactive bottlebrush nano-copolymers based on polystyrene and polyaniline as side chains and poly(3-(2-hydroxyethyl)thiophene) as backbone. Polym. Bull. 77, 3707–3724 (2020). https://doi.org/10.1007/s00289-019-02936-3

Download citation

Keywords

  • Bottlebrush
  • Graft
  • ATRP
  • PSt
  • PANI