Suspension of poly(o-toluidine)-coated silica-based core–shell-structured composite in silicone oil: fabrication and rheological properties at different external electric field strengths


In this study, suspensions of core–shell particles dispersed in a silicone oil were fabricated and their rheological properties were evaluated at different external electric field strengths. The core–shell-structured composite materials were synthesized by coating poly(o-toluidine) (PoT) shells on the surfaces of silica particles. The silica particles were extracted from rice husk through acid and thermal treatments. The silica particles were then modified with (3-trimethoxysilyl)propyl methacrylate prior to the coating with the PoT shells. The chemical structures, morphologies, particle sizes, and elemental distributions of both silica and core–shell particles were investigated using scanning electron microscopy, Fourier-transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy. Additionally, the rheological properties, chain formations, and dielectric properties of the suspensions were analyzed using rotational rheometry, optical microscopy, and an inductance–capacitance–resistance meter. The shear stress increased with the electric field strength along with the electro-rheological efficiency. The plot of the yield stress against the applied electric field strength exhibited a slope of 1.5. The fabricated core–shell particles are environment-friendly and are promising materials for applications in next-generation electro-rheological fluids.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Yin J, Wang X, Chang R, Zhao X (2012) Polyaniline decorated graphene sheet suspension with enhanced electrorheology. Soft Matter 8:294–297

    CAS  Article  Google Scholar 

  2. 2.

    Shin K, Kim D, Cho JC, Lim HS, Kim JW, Suh KD (2012) Monodisperse conducting colloidal dipoles with symmetric dimer structure for enhancing electrorheology properties. J Colloid Interface Sci 374:18–24

    CAS  Article  Google Scholar 

  3. 3.

    Gong X, Wang L, Wen W (2009) Design and fabrication of monodisperse hollow titania microspheres from a microfluidic droplet-template. Chem Commun 31:4690–4692

    Article  Google Scholar 

  4. 4.

    Sedlacik M, Mrlik M, Kozakova Z, Pavlinek V, Kuritka I (2013) Synthesis and electrorheology of rod-like titanium oxide particles prepared via microwave-assisted molten-salt method. Colloid Polym Sci 291:1105–1111

    CAS  Article  Google Scholar 

  5. 5.

    Wang B, Yin Y, Liu C, Yu S, Chen K (2013) Synthesis of flower-like BaTiO3/Fe3O4 hierarchically structured particles and their electrorheological and magnetic properties. Dalton Trans 42:10042–10055

    CAS  Article  Google Scholar 

  6. 6.

    Cheng Y, Guo J, Liu X, Sun A, Xu G, Cui P (2011) Preparation of uniform titania microspheres with good electrorheological performance and their size effect. J Mater Chem 21:5051–5056

    CAS  Article  Google Scholar 

  7. 7.

    Wu J, Jin T, Liu F, Guo J, Cheng Y, Xu G (2014) Formamide-modified titanium oxide nanoparticles with high electrorheological activity. RSC Adv 4:29622–29628

    CAS  Article  Google Scholar 

  8. 8.

    Tang J, Wen X, Liu Z, Wang J, Zhang P (2018) Synthesis and electrorheological performances of 2D PANI/TiO2 nanosheets. Colloids Surf A Physicochem Eng Asp 552:24–31

    CAS  Article  Google Scholar 

  9. 9.

    Xinrong S, Aiqing H, Nianyuan T, Dan M, Yuanbin L (2011) Influence of amphiprotic groups on the electrorheological behavior of polymers. Mater Chem Phys 126:369–374

    Article  Google Scholar 

  10. 10.

    He K, Wen Q, Wang C, Wang B, Yu S, Hao C, Chen K (2017) Synthesis of anatase TiO2 with exposed (100) facets and enhanced electrorheological activity. Soft Matter 13:7879–7889

    CAS  Article  Google Scholar 

  11. 11.

    He K, Wen Q, Wang C, Wang B, Yu S, Hao C, Chen K (2017) The preparation and electrorheological behavior of bowl-like titanium oxide nanoparticles. Soft Matter 13:7677–7688

    CAS  Article  Google Scholar 

  12. 12.

    Liu W, Xie Z, Lu Y, Gao M, Zhang W, Gao L (2019) Fabrication and excellent electroresponsive properties of ideal PMMA@BaTiO3 composite particles. RSC Adv 9:12404–12414

    CAS  Article  Google Scholar 

  13. 13.

    Sung BH, Ko YG, Choi US (2007) Novel synthesis and electrorheological properties of monodispersed submicron-sized hollow polyaniline dicarboxylate salt form suspensions. Colloids Surf A Physicochem Eng Asp 292:217–223

    CAS  Article  Google Scholar 

  14. 14.

    Wang B, Tian X, He K, Ma L, Yu S, Hao C, Chen K, Lei Q (2016) Hollow PAQR nanostructure and its smart electrorheological activity. Polymer 83:129–137

    CAS  Article  Google Scholar 

  15. 15.

    Tilki T, Yavuz M, Karabacak C, Cabuk M, Ulutürk M (2010) Investigation of electrorheological properties of biodegradable modified cellulose/corn oil suspensions. Carbohydr Res 345:672–679

    CAS  Article  Google Scholar 

  16. 16.

    Winslow WM (1949) Induced fibration of suspensions. J Appl Phys 20:1137

    CAS  Article  Google Scholar 

  17. 17.

    Zukoski CF (1993) Material properties and the electrorheological response. Annu Rev Mater Sci 23:45–78

    CAS  Article  Google Scholar 

  18. 18.

    Block H, Kelly JP (1988) Electro-rheology. J Phys D Appl Phys 21:1661

    CAS  Article  Google Scholar 

  19. 19.

    Hao T (2001) Electrorheological fluids. Adv Mater 13:1847–1857

    CAS  Article  Google Scholar 

  20. 20.

    Hao T, Kawai A, Ikazaki F (1998) Mechanism of the electrorheological effect: evidence from the conductive, dielectric, and surface characteristics of water-free electrorheological fluids. Langmuir 14:1256–1262

    CAS  Article  Google Scholar 

  21. 21.

    Yethiraj A (2007) Tunable colloids: control of colloidal phase transitions with tunable interactions. Soft Matter 3:1099–1115

    CAS  Article  Google Scholar 

  22. 22.

    Stokes JR, Frith WJ (2008) Rheology of gelling and yielding soft matter systems. Soft Matter 4:1133–1140

    CAS  Article  Google Scholar 

  23. 23.

    Yilmaz H, Unal HI, Sari B (2007) Synthesis, characterization and electrorheological properties of poly(o-toluidine)/Zn conducting composites. J Appl Polym Sci 103:1058–1065

    CAS  Article  Google Scholar 

  24. 24.

    Zhou Y, Qin ZY, Li L, Zhang Y, Wei YL, Wang LF, Zhu MF (2010) Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials. Electrochim Acta 55:3904–3908

    CAS  Article  Google Scholar 

  25. 25.

    Ozkan S, Unal HI, Yılmaz E, Suludere Z (2015) Electrokinetic and antibacterial properties of needle like TiO2/polyrhodanine core/shell hybrid nanostructures. J Appl Polym Sci 132:41554

    Google Scholar 

  26. 26.

    Yeh JM, Kuo TH, Huang HJ, Chang KC, Chang MY, Yang JC (2007) Preparation and characterization of poly(o-methoxyaniline)/Na+–MMT clay nanocomposite via emulsion polymerization: electrochemical studies of corrosion protection. Eur Polym J 43:1624–1634

    CAS  Article  Google Scholar 

  27. 27.

    Dey A, De S, De A, De SK (2004) Characterization and dielectric properties of polyaniline–TiO2 nanocomposites. Nanotechnology 15:1277–1283

    CAS  Article  Google Scholar 

  28. 28.

    Wen Q, He K, Wang C, Wang B, Yu S, Hao C, Chen K (2018) Clip-like polyaniline nanofibers synthesized by an insitu chemical oxidative polymerization and its strong electrorheological behavior. Synth Met 239:1–12

    CAS  Article  Google Scholar 

  29. 29.

    Wen Q, Ma L, Wang C, Wang B, Han R, Hao C, Chen K (2019) Preparation of core–shell structured metal–organic framework@PANI nanocomposite and its electrorheological properties. RSC Adv 9:14520–14530

    CAS  Article  Google Scholar 

  30. 30.

    Tang J, Wen X, Liu Z, Wang J, Zhang P (2018) Synthesis and electrorheological performances of 2D PANI/TiO2 nanosheets. Colloid Surf A: Physicochem Eng Asp 552:24–31

    CAS  Article  Google Scholar 

  31. 31.

    Yin J, Zhao X, Xia X, Xiang L, Qiao Y (2008) Electrorheological fluids based on nano-fibrous polyaniline. Polymer 49:4413–4419

    CAS  Article  Google Scholar 

  32. 32.

    Gercek B, Yavuz M, Yilmaz H, Sari B, Unala HI (2007) Comparison of electrorheological properties of some polyaniline derivatives. Colloids Surf A Physicochem Eng Asp 299:124–132

    CAS  Article  Google Scholar 

  33. 33.

    Huiru MA, Jianguo G, Runzhang Y (2005) Electrorheological properties of suspensions of PAn–PEO–PAn triblock copolymer particles. J Wuhan Univ Technol Mater Sci Ed 20:43–45

    Article  Google Scholar 

  34. 34.

    Zhang L, Su K, Li X (2003) Electrorheological effects of polyaniline-type electrorheological fluids. J Appl Polym Sci 87:733–740

    CAS  Article  Google Scholar 

  35. 35.

    Liu J, Wen X, Liu Z, Tan Y, Yang S, Zhang P (2015) Electrorheological performances of poly(o-toluidine) and p-toluenesulfonic acid doped poly(o-toluidine) suspensions. Colloid Polym Sci 293:1391–1400

    CAS  Article  Google Scholar 

Download references


This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.02-2017.15.

Author information



Corresponding author

Correspondence to Cuong Manh Vu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bach, Q., Vu, C.M., Vu, H.T. et al. Suspension of poly(o-toluidine)-coated silica-based core–shell-structured composite in silicone oil: fabrication and rheological properties at different external electric field strengths. Polym. Bull. 77, 3563–3576 (2020).

Download citation


  • Rice husk
  • Silanized silica
  • Electro-rheological fluid
  • Rheological properties
  • Silicone oil
  • Core–shell particle