Preparation and characterization of silica nanoparticles from sugarcane bagasse ash for using as a filler in natural rubber composites

Abstract

Silica nanoparticles from sugarcane bagasse ash (SBA) were prepared from sol–gel process. Particle size, specific surface area, morphology, chemical composition and chemical structure of SBA and prepared silica nanoparticles were characterized. The effect of drying techniques such as freeze drying (FD) and heat drying (HD) on the properties of silica nanoparticles was investigated. High purity of silica nanoparticles in size range of 90 ± 10 nm were successfully prepared. FD provided silica nanoparticles with high specific surface area and high porosity compared to conventional HD. The effect of silica nanoparticle contents on cure characteristics, mechanical properties, and morphology of natural rubber (NR) composites was studied. Scorch time of NR composites was increased with an increase in silica nanoparticle content due to the disturbance of vulcanization process by silica surface. FD-silica/NR composites provided longer scorch time and cure time compared to HD-silica/NR composites due to higher active surface area of FD-silica. Modulus and hardness of NR composites were increased while elongation at break was decreased with an increase in silica nanoparticle content. Tensile strength of the composites increased with silica nanoparticle content and tended to reduce at high silica nanoparticle content. FD-silica/NR composites exhibited better mechanical properties than HD-silica/NR composites due to better filler-rubber interaction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26(3):369–377

    CAS  Google Scholar 

  2. 2.

    Ahmed K, Nizami SS, Riza NZ (2014) Reinforcement of natural rubber hybrid composites based on marble sludge/silica and marble sludge/rice husk derived silica. J Adv Res 5(2):165–173

    CAS  PubMed  Google Scholar 

  3. 3.

    Chuayjuljit S, Eiumnoh S, Potiyaraj P (2001) Using silica from rice husk as a reinforcing filler in natural rubber. J Sci Res Chula Univ 26(2):127–138

    CAS  Google Scholar 

  4. 4.

    Lay M, Azura AR, Othman N, Tezuka Y, Pen C (2013) Effect of nanosilica fillers on the cure characteristics and mechanical properties of natural rubber composites. Adv Mater Res 626:818–822

    Google Scholar 

  5. 5.

    Jafarzadeh M, Rahman IA, Sipaut CS (2009) Synthesis of silica nanoparticles by modified sol-gel process: the effect of mixing modes of the reactants and drying techniques. J Sol–Gel Sci Technol 50(3):328–336

    CAS  Google Scholar 

  6. 6.

    Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Chee CK (2008) Effect of the drying techniques on the morphology of silica nanoparticles synthesized via sol-gel process. Ceram Int 34(8):2059–2066

    CAS  Google Scholar 

  7. 7.

    Weichold O, Tigges B, Bertmer M, Moller M (2008) A comparative study on the dispersion stability of aminofunctionalised silica nanoparticles made from sodium silicate. J Colloid Interface Sci 324:05–109

    Google Scholar 

  8. 8.

    Zulfiqar U, Subhani T, Husain SW (2016) Synthesis of silica nanoparticles from sodium silicate under alkaline conditions. J Sol-Gel Sci Technol 77(3):753–758

    CAS  Google Scholar 

  9. 9.

    Norsuraya S, Fazlena H, Norhasyimi R (2016) Sugarcane bagasse as a renewable source of silica to synthesize santa barbara amorphous-15 (SBA-15). Procedia Eng 14:839–846

    Google Scholar 

  10. 10.

    Premaratne WAPJ, Priyadarshana WMGI, Gunawardena SHP, De Alwis AAP (2013) Synthesis of nanosilica from paddy husk ash and their surface functionalization. J Sci Univ Kelaniya 8:33–48

    Google Scholar 

  11. 11.

    Huabcharoen P, Wimolmala E, Markpin T, Sombatsompop N (2017) Purification and characterization of silica from sugarcane bagasse ash as a reinforcing filler in natural rubber composites. BioResources 12(1):1228–1245

    CAS  Google Scholar 

  12. 12.

    Ghorbani F, Sanati AM, Maleki M (2015) Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique. Environ Stud Persian Gulf 2(1):56–65

    Google Scholar 

  13. 13.

    Rani KM, Palanisamy PN, Sivakumar P (2014) Synthesis and characterization of amorphous nanosilica from biomass ash. Int J Adv Technol Eng Sci 2(10):71–76

    Google Scholar 

  14. 14.

    Alayande SO, Dare EO, Ayinde WB, Bamigbose J, Ayedun PA, Osinkolu GA (2012) Development of ordered and disordered macroporous silica from bagasse ash. J Pure Appl Chem 6(1):10–14

    CAS  Google Scholar 

  15. 15.

    Alves RH, Reis TVS, Rovani S, Fungaro DA (2017) Green synthesis and characterization of biosilica produced from sugarcane waste ash. J Chem 2017:1–9

    CAS  Google Scholar 

  16. 16.

    Chen G, Wang W (2007) Role of freeze drying in nanotechnology. Dry Technol 25(1):29–35

    CAS  Google Scholar 

  17. 17.

    Lu P, Hsieh YL (2012) Highly pure amorphous silica nano-disks from rice straw. Powder Technol 225:149–155

    CAS  Google Scholar 

  18. 18.

    Pongdong W, Nakason C, Kummerlowe C, Vennemann N (2015) Influence of filler from a renewable resource and silane coupling agent on the properties of epoxidized natural rubber vulcanizates. J Chem 2015:1–15

    Google Scholar 

  19. 19.

    Mathew L, Narayanankutty SK (2010) Synthesis, characterisation and performance of nanosilica as filler in natural rubber compounds. J Rubb Res 13(1):27–43

    CAS  Google Scholar 

  20. 20.

    Prasertsri S, Rattanasom N (2012) Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: mechanical and dynamic properties. Polym Test 31(5):593–605

    CAS  Google Scholar 

  21. 21.

    Tabaei TA, Bagheri R, Hesami M (2015) Comparison of cure characteristics and mechanical properties of nano and micro silica-filled CSM elastomers. J Appl Polym Sci. https://doi.org/10.1002/app.42668

    Google Scholar 

  22. 22.

    Li ZH, Zhang J, Chen S (2008) Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber. J Exp Polym Lett 2(1):695–704

    CAS  Google Scholar 

  23. 23.

    Marković G, Radovanović B, Marinović-Cincović M, Budinski-Simendić J (2009) The Effect of accelerators on curing characteristics and properties of natural rubber/chlorosulphonated polyethylene rubber blend. J Mater Manuf Process 24(10):1224–1228

    Google Scholar 

  24. 24.

    Santos RJD, Agostini DLDS, Cabrera FC, Reis EAPD, Ruiz MR, Budemberg ER, Job AE (2014) Sugarcane bagasse ash: new filler to natural rubber composite. Polímeros 24(6):646–653

    Google Scholar 

  25. 25.

    Nakason C, Kaesaman A, Eardrod K (2005) Cure and mechanical properties of natural rubber-g-poly (methyl methacrylate)–cassava starch compounds. Mater Lett 59:4020–4025

    CAS  Google Scholar 

  26. 26.

    Nor NM, Othman N (2016) Effect of filler loading on curing characteristic and tensile properties of palygorskite natural rubber nanocomposites. Proc Chem 19:351–358

    Google Scholar 

  27. 27.

    Sarkawi SS, Aziz Y (2003) Ground rice husk as filler in rubber compounding. J Teknol 39(1):135–148

    Google Scholar 

  28. 28.

    Francis LF, Grunlan JC, Sun J, Gerberich WW (2007) Conductive coatings and composites from latex-based dispersions. Colloids Surf A Physicochem Eng Asp 311:48–54

    CAS  Google Scholar 

  29. 29.

    Arun KJ, Francis PJ, Joseph R (2010) Mechanical properties of NR latex-nano silica composites. J Optoelectron Adv M 4:1520–1525

    CAS  Google Scholar 

  30. 30.

    Yin C, Zhang Q, Liu J, Liu L, Gu J (2018) Preparation, properties of In-situ silica modified styrene-butadiene rubber and its silica-filled composites. Polym Compos 39(1):22–28

    CAS  Google Scholar 

  31. 31.

    Yin C, Zhang Q, Gu J, Zheng J, Gong G, Liang T, Zhang H (2013) In situ silica reinforcement of vinyltriethoxysilane-grafted styrene-butadiene rubber by sol-gel process. J Appl Polym Sci 128(4):2262–2268

    CAS  Google Scholar 

  32. 32.

    Roy K, Debnath SC, Potiyaraj P (2019) A critical review on the utilization of various reinforcement modifiers in filled rubber composites. J Elastom Plast. https://doi.org/10.1177/0095244319835869

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Suranaree University of Technology for financial supports, Khonburi Power Plant Co., Ltd. subordinated to Khonburi Sugar Public Co., Ltd. for supplying sugarcane bagasse ash and PI Industry Co., Ltd. for supplying chemicals used in rubber compounding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kasama Jarukumjorn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boonmee, A., Jarukumjorn, K. Preparation and characterization of silica nanoparticles from sugarcane bagasse ash for using as a filler in natural rubber composites. Polym. Bull. 77, 3457–3472 (2020). https://doi.org/10.1007/s00289-019-02925-6

Download citation

Keywords

  • Silica nanoparticle
  • Natural rubber
  • Sugarcane bagasse ash
  • Composites
  • Mechanical properties