Nanocomposite membranes based on sodium alginate/poly(ε-caprolactone)/graphene oxide for methanol, ethanol and isopropanol dehydration via pervaporation

Abstract

Novel biodegradable nanocomposite membranes were prepared by incorporating different concentrations (2, 4 and 6 wt%) of graphene oxide (GO) as a nanoadditive into a blend of sodium alginate/poly(ε-caprolactone) at ratio of 3:1 (SA:PCL) on the basis of solution-casting method and were then used for dehydration of a series of alcohols (methanol, ethanol and isopropanol) through pervaporation. The effects of feed composition, GO content and various alcohols on pervaporation performance were investigated. In addition, the swelling behaviors of SA/PCL/GO nanocomposite membranes were measured. All membranes were water selective, and the permeation rate increased with raising the GO content. The presence of GO having the functional groups increased the hydrophilicity of the SA/PCL blend polymer matrix, which resulted in the formation of a higher flux to water molecules. The best separation performance was achieved for the SA/PCL/GO-6 nanocomposite membrane containing 6 wt% GO with isopropanol–water feed at 30 °C. An enhancement in water concentration from 20 to 80 wt% increased the flux values from 506 to 779 g/m2 h. Likewise, an increase in feed water composition in the case of ethanol–water and methanol–water mixtures increased the flux values from 461 to 757 g/m2 h and from 298 to 569 g/m2 h, respectively. However, the separation factor of water for all membranes decreased with the increase in feed concentration. Pervaporation dehydration of aqueous isopropanol mixtures also proceeded easier than that of aqueous ethanol and methanol mixtures due to the larger molecular size of isopropanol. High dehydration performance of alcohol–water mixtures demonstrated the utility of these membranes for use in solvent dehydration application with higher efficiency.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Chapman PD, Olivera T, Livingston AG, Li K (2008) Membranes for the dehydration of solvents by pervaporation. J Membr Sci 318:5–37

    CAS  Article  Google Scholar 

  2. 2.

    Bolto B, Hoang M, Xie Z (2011) A review of membrane selection for the dehydration of aqueous ethanol by pervaporation. Chem Eng Process 50:227–235

    CAS  Article  Google Scholar 

  3. 3.

    Uragami T, Yamamoto S, Miyata T (2003) Dehydration from alcohols by polyion complex cross-linked chitosan composite membranes during evapomeation. Biomacromol 4:14731–14744

    Article  Google Scholar 

  4. 4.

    Magalad VT, Gokavi GS, Nadagowda MN, Aminabhavi TM (2011) Pervaporation separation of water–ethanol mixtures using organic–inorganic nanocomposite membranes. J Phys Chem 115:14731–14744

    CAS  Google Scholar 

  5. 5.

    Mansourpanah Y, Shahebrahimi H, Kolvari E (2015) PEG-modified GO nanosheets, a desired additive to increase the rejection and antifouling characteristics of polyamide thin layer membranes. Chem Eng Res Des 104:530–540

    CAS  Article  Google Scholar 

  6. 6.

    Mansourpanah Y, Jafari Z (2015) Efficacy of different generations and concentrations of PAMAM-NH2 on the performance and structure of TFC membranes. React Funct Polym 93:178–189

    CAS  Article  Google Scholar 

  7. 7.

    Nasajpour A, Mandla S, Shree S, Mostafavi E, Sharifi R, Khalilpour A, Saghazadeh S, Hassan S, Mitchell MJ, Leijten J, Hou X (2017) Nanostructured fibrous membranes with rose spike-like architecture. Nano Lett 17(10):6235–6240

    CAS  Article  Google Scholar 

  8. 8.

    Nasajpour A, Ansari S, Rinoldi C, Rad AS, Aghaloo T, Shin SR, Mishra YK, Adelung R, Swieszkowski W, Annabi N, Khademhosseini A (2018) A multifunctional polymeric periodontal membrane with osteogenic and antibacterial characteristics. Adv Func Mater 28(3):1703437

    Article  Google Scholar 

  9. 9.

    Mohammadinejad R, Maleki H, Larrañeta E, Fajardo AR, Nik AB, Shavandi A, Sheikhi A, Ghorbanpour M, Farokhi M, Govindh P, Cabane E (2019) Status and future scope of plant-based green hydrogels in biomedical engineering. Appl Mater Today 16:213–246

    Article  Google Scholar 

  10. 10.

    Adoor SG, Sairam M, Manjeshwar LS, Raju KVSN, Aminbhavi TM (2006) Sodium montmorillonite clay loaded novel mixed matrix membranes of poly(vinyl alcohol) for pervaporation dehydration of aqueous mixtures of isopropanol and 1,4-dioxane. J Membr Sci 285:182–195

    CAS  Article  Google Scholar 

  11. 11.

    Magalad VT, Gokavi GS, Raju KVSN, Aminabhavi TM (2010) Mixed matrix blend membranes of poly(vinyl alcohol)–poly(vinyl pyrrolidone) loaded with phosphomolybdic acid used in pervaporation dehydration of ethanol. J Membr Sci 354:150–161

    CAS  Article  Google Scholar 

  12. 12.

    Suhas DP, Aminabhavi TM, Raghu AV (2014) Mixed matrix membranes of H-ZSM5 loaded poly(vinyl alcohol) used in pervaporation dehydration of alcohols: influence of silica/alumina ratio. Polym Eng Sci 54:1774–1782

    CAS  Article  Google Scholar 

  13. 13.

    Bhat SD, Aminabhavi TM (2006) Novel sodium alginate composite membranes incorporated with SBA-15 molecular sieves for the pervaporation dehydration of aqueous mixtures of isopropanol and 1,4-dioxane at 30 °C. Microporous Mesoporous Mater 91:206–214

    CAS  Article  Google Scholar 

  14. 14.

    Kang C-H, Lin Y-F, Huang Y-S, Tung K-L, Chang K-S, Chen J-T, Huang W-S, Lee K-R, Lai J-Y (2013) Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures. J Membr Sci 438:105–111

    CAS  Article  Google Scholar 

  15. 15.

    Liu G, Yang D, Zhu Y, Ma J, Nie M, Jiang Z (2011) Titanate nanotubes-embedded chitosan nanocomposite membranes with high isopropanol dehydration performance. Chem Eng Sci 66:4221–4228

    CAS  Article  Google Scholar 

  16. 16.

    Gong L, Zhang L, Wang N, Li J, Ji S, Guo H, Zhang G, Zhang Z (2014) In situ ultraviolet-light-induced TiO2 nanohybrid super-hydrophilic membrane for pervaporation dehydration. Sep Purif Technol 122:32–40

    CAS  Article  Google Scholar 

  17. 17.

    Suhas DP, Aminabhavi TM, Jeong HM, Raghu AV (2013) Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via pervaporation technique. RSC Adv 3:17120–17130

    CAS  Article  Google Scholar 

  18. 18.

    Nguyen DA, Lee YR, Raghu AV, Jeong HM, Shin CM, Kim BK (2009) Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polym Int 58:412–417

    CAS  Article  Google Scholar 

  19. 19.

    Adoor SG, Rajineekanth V, Nadagouda MN, Rao KC, Dionysiou DD, Aminabhavi TM (2013) Exploration of nanocomposite membranes composed of phosphotungstic acid in sodium alginate for separation of aqueous-organic mixtures by pervaporation. Sep Purif Technol 113:64–74

    CAS  Article  Google Scholar 

  20. 20.

    Nigiz FU, Dogan H, Hilmioglu ND (2012) Pervaporation of ethanol/water mixtures using clinoptilolite and 4A filled sodium alginate membranes. Desalination 300:24–31

    CAS  Article  Google Scholar 

  21. 21.

    Aminabhavi TM, Naik HG (2002) Synthesis of graft copolymeric membranes of poly(vinyl alcohol) and polyacrylamide for pervaporation separation of water/acetic acid mixtures. J Appl Polym Sci 83:244–258

    CAS  Article  Google Scholar 

  22. 22.

    Choudhari SK, Premakshi HG, Kariduraganavar M (2016) Development of novel alginate–silica hybrid membranes for pervaporation dehydration of isopropanol. Polym Bull 73:743–762

    CAS  Article  Google Scholar 

  23. 23.

    Kalyani S, Smitha B, Sridhar S, Krishnaiah A (2008) Pervaporation separation of ethanol/water mixtures through sodium alginate membranes. Desalination 229:69–81

    Article  Google Scholar 

  24. 24.

    Hung W-S, An Q-F, Guzman MD, Lin H-Y, Huang S-H, W-R Liu, Hu C-C, Lee K-R, Lai J-Y (2014) Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon 68:670–677

    CAS  Article  Google Scholar 

  25. 25.

    Le NL, Chung T-S (2014) High-performance sulfonated polyimide/polyimide/polyhedral oligosilsequioxane hybrid membranes for ethanol dehydration applications. J Membr Sci 454:62–73

    CAS  Article  Google Scholar 

  26. 26.

    Tang YP, Paul DR, Chung T-S (2014) Free-standing graphene oxide thin films assembled by a pressurized ultrafiltration method for dehydration of ethanol. J Membr Sci 458:199–208

    CAS  Article  Google Scholar 

  27. 27.

    Chung T-S, Jiang LY, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507

    CAS  Article  Google Scholar 

  28. 28.

    Han D, Yan L, Chen W, Li W (2011) Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr Polym 83:653–658

    CAS  Article  Google Scholar 

  29. 29.

    Wang G, Wang B, Park J, Yang J, Shen X, Yao J (2009) Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by solvothermal method. Carbon 47:68–72

    CAS  Article  Google Scholar 

  30. 30.

    Choi JT, Dao TD, Oh KM, Lee H, Jeong HM, Kim BK (2012) Shape memory polyurethane nanocomposites with functionalized graphene. Smart Mater Struct 21:75017–75025

    Article  Google Scholar 

  31. 31.

    Dong YQ, Zhang L, Shen JN, Song MY, Chen HL (2006) Preparation of poly(vinyl alcohol) sodium alginate hollow fiber hybrid membranes and pervaporation dehydration characterization of aqueous alcohol mixtures. Desalination 193:202–210

    CAS  Article  Google Scholar 

  32. 32.

    Cao K, Jiang ZY, Zhao J, Zhao CH, Gao CY et al (2014) Enhanced water permeation through sodium alginate membranes by incorporating graphene oxide. J Membr Sci 469:272–283

    CAS  Article  Google Scholar 

  33. 33.

    Gao CY, Zhang MH, Ding JW, Pan FS, Jiang ZY et al (2014) Pervaporation dehydration of ethanol by hyaluronic acid/sodium-alginate two-active-layer hybrid membranes. Carbohydr Polym 99:158–165

    CAS  Article  Google Scholar 

  34. 34.

    Saraswathi M, Rao KM, Prabhakar MN, Prasad CV, Subha MCS (2010) Pervaporation studies of sodium alginate (SA)/dextrin blend membranes for separation of water and isopropanol mixture. Desalination 269:177–183

    Article  Google Scholar 

  35. 35.

    Adoor SG, Manieshwar LS, Bhat SD, Aminabhavi TM (2008) Aluminum rich zeolite beta incorporated esterification of ethanol and acetic acid. J Membr Sci 318:233–246

    CAS  Article  Google Scholar 

  36. 36.

    Magalad VT, Supale AR, Maradur SP, Gokavi GS, Aminabhavi TM (2010) Preyssler type heteropolyacide incorporated highly water-selective sodium alginate-based inorganic-organic hybrid membranes for pervaporation dehydration of ethanol. Chem Eng J 159:75–83

    CAS  Article  Google Scholar 

  37. 37.

    Shieh R, Huang YM (1998) Chitosan/N-methylol nylon 6 blend membranes for the pervaporation separation of ethanol–water mixtures. J Membr Sci 148:243–251

    CAS  Article  Google Scholar 

  38. 38.

    Chao W-C, Huang Y-H, Liaw D-J, Hsieh Y-Y, Hung W-S, Huang S-H, Lee K-R, Lai J-Y (2013) Correlating the microstructure of novel polyamide thin-film composite membranes with ethanol dehydration performances. Polymer 54:1381–1387

    CAS  Article  Google Scholar 

  39. 39.

    Shi GM, Chung T-S (2013) Thin film composite membranes on ceramic for pervaporation dehydration of isopropanol. J Membr Sci 448:34–43

    CAS  Article  Google Scholar 

  40. 40.

    Hua D, Ong YK, Wang Y, Yang T, Chung T-S (2014) ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol. J Membr Sci 453:155–167

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shafagh Mokhtarzadeh or Yaghoub Mansourpanah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mokhtarzadeh, S., Hakimpour, F., Sarvari, R. et al. Nanocomposite membranes based on sodium alginate/poly(ε-caprolactone)/graphene oxide for methanol, ethanol and isopropanol dehydration via pervaporation. Polym. Bull. 77, 3367–3387 (2020). https://doi.org/10.1007/s00289-019-02921-w

Download citation

Keywords

  • Pervaporation
  • GO
  • Nanocomposite membranes
  • Alcohols