Piezoresistive epoxy resin films with carbon black particles for small-strain sensors

Abstract

Materials that change resistance after undergoing deformation have various types of applications as sensors. Among the materials that may be used for this purpose, there are some in which conducting particles are immersed in an isolating polymeric matrix. Carbon black (CB) particles have high electrical conductivity, allowing them to be included in a resin epoxy (EPX) matrix and resulting in an electrical conductor composite; this can be done even in the case of low volumetric fractions of CB. The goal of this work was crafting a conducting polymeric film that has piezoresistive behavior for utilization as strain sensors for low deformations. A relevant aspect of the film development was the search for a solvent to lower the viscosity of the EPX to enhance the homogeneity of the composite. Acetone showed good potential as the solvent for this composite. The sensor showed efficiency under small strain, especially when used with a substrate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Canavese G, Stassi S, Stralla M, Bignardi C, Pirri CF (2012) Stretchable and conformable metal–polymer piezoresistive hybrid system. Sens Actuators A Phys 186:191–197

    CAS  Google Scholar 

  2. 2.

    Bloor D, Donnelly K, Hands PJ, Laughlin P, Lussey D (2005) A metal–polymer composite with unusual properties. J Phys D Appl Phys 38:2851–2860

    CAS  Google Scholar 

  3. 3.

    Han BG, Han BZ, Ou JP (2009) Experimental study on use of nickel powder-filled Portland cement-based composite for fabrication of piezoresistive sensors with high sensitivity. Sens Actuators A Phys 149:51–55

    CAS  Google Scholar 

  4. 4.

    Han BG, Yu Y, Ha BZ, Ou JP (2008) Development of a wireless stress/strain measurement system integrated with pressure-sensitive nickel powder-filled cement-based sensors. Sens Actuators A Phys 147:536–543

    CAS  Google Scholar 

  5. 5.

    Han BG, Han BZ, Yu X (2010) Effects of the content level and particle size of nickel powder on the piezoresistivity of cement-based composites/sensors. Smart Mater Struct 19:065012

    Google Scholar 

  6. 6.

    Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1991) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40:5967–5971

    Google Scholar 

  7. 7.

    Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS (2003) Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos Sci Technol 63:1637–1646

    CAS  Google Scholar 

  8. 8.

    Azhari F, Banthia N (2012) Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cem Concrete Compos 34:866–873

    CAS  Google Scholar 

  9. 9.

    Dang Z, Jiang M, Xie D, Yao S, Zhang L, Bai J (2008) Supersensitive linear piezoresistive property in carbon nanotubes/silicone rubber nanocomposites. J Appl Phys 104:024114

    Google Scholar 

  10. 10.

    Wang L, Cheng L (2014) Piezoresistive effect of a carbon nanotube silicone-matrix composite. Carbon 71:319–331

    CAS  Google Scholar 

  11. 11.

    Wang L, Xu C, Li Y (2013) Piezoresistive response to changes in contributive tunneling film network of carbon nanotube/silicone rubber composites under multi-load/unload. Sens Actuators A Phys 189:45–54

    CAS  Google Scholar 

  12. 12.

    Zetina-Hernández O, Duarte-Aranda S, May-Pat A, Canché-Escamilla G, Uribe-Calderon J, Gonzalez-Chi PI, Avilés F (2013) Coupled electro-mechanical properties of multiwall carbon nanotube/polypropylene composites for strain sensing applications. J Mater Sci 48(21):7587–7593

    Google Scholar 

  13. 13.

    Fung CK, Zhang MQ, Chan RH, Li WJ (2005) A PMMA-based micro pressure sensor chip using carbon nanotubes as sensing elements. In: 18th IEEE international conference on micro electro mechanical systems (MEMS 2005), pp 251–254

  14. 14.

    Makireddi S, Shivaprasad S, Kosuri G, Varghese FV, Balasubramaniam K (2005) Electro-elastic and piezoresistive behavior of flexible MWCNT/PMMA nanocomposite films prepared by solvent casting method for structural health monitoring applications. Compos Sci Technol 118:101–107

    Google Scholar 

  15. 15.

    Wichmann MH, Buschhorn ST, Gehrmann J, Schulte K (2009) Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load. Phys Rev B 80(24):245437

    Google Scholar 

  16. 16.

    Chung DDL (2000) Cement reinforced with short carbon fibers: a multifunctional material. Compos B 31:511–526

    Google Scholar 

  17. 17.

    Chung DDL (2000) Cement-matrix composites for smart structures. Smart Mater Struct 9:389–401

    CAS  Google Scholar 

  18. 18.

    Paleo AJ, Van Hattum FWJ, Pereira J, Rocha JG, Silva J, Sencadas V, Lanceros-Méndez S (2010) The piezoresistive effect in polypropylene–carbon nanofibre composites obtained by shear extrusion. Smart Mater Struct 19(6):065013

    Google Scholar 

  19. 19.

    Wang X, Chung DDL (1998) Short carbon fiber reinforced epoxy coating as a piezoresistive strain sensor for cement mortar. Sens Actuators A Phys 71(3):208–212

    CAS  Google Scholar 

  20. 20.

    Ding T, Wang L, Wang P (2007) Changes in electrical resistance of carbon-black-filled silicone rubber composite during compression. J Polym Sci B Polym Phys 45(19):2700–2706

    CAS  Google Scholar 

  21. 21.

    Wu G, Asai S, Cheng Z, Miura T, Sumita M (2000) A delay of percolation time in carbon-black-filled conductive polymer composites. J Appl Phys 88:1480

    CAS  Google Scholar 

  22. 22.

    Yang QQ, Liang JZ (2008) A percolation model for insulator–metal transition in polymer–conductor composites. Appl Phys Lett 93:131918

    Google Scholar 

  23. 23.

    Schueler R, Petermann J, Schulte K, Wentzel H (1997) Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin. Appl Polym Sci 63:1741–1746

    CAS  Google Scholar 

  24. 24.

    Oh J, Oh K, Kim C, Hong C (2004) Desing of radar absorbing structures using glass/epoxy composites containing carbon black in X-band frequency ranges. Compos B 35:46–56

    Google Scholar 

  25. 25.

    Narkis M, Ram A, Flashner F (1978) Electrical properties of carbon black filled polyethylene. Polym Eng Sci 18:649–653

    CAS  Google Scholar 

  26. 26.

    Calleja FJB, Bayer RK, Ezquerra TA (1988) Electrical conductivity of polyethylene–carbon–fiber composites mixed with carbon black. J Mater Sci 23:1411–1415

    Google Scholar 

  27. 27.

    Kost J, Narkis M, Foux A (1984) Resistivity behavior of carbon-black-filled silicone rubber in cyclic loading experiments. J Appl Polym Sci 29:3937–3946

    CAS  Google Scholar 

  28. 28.

    Chen L, Chen G, Lu L (2007) Piezoresistive behavior study on finger-sensing silicone rubber/graphite nanosheet nanocomposites. Adv Funct Mater 17:898–904

    Google Scholar 

  29. 29.

    Soltani R, Katbab AA (2010) The role of interfacial compatibilizer in controlling the electrical conductivity and piezoresistive behavior of the nanocomposites based on RTV silicone rubber/graphite nanosheets. Sens Actuators A Phys 163:213–219

    CAS  Google Scholar 

  30. 30.

    Qu S, Wong SC (2007) Piezoresistive behavior of polymer reinforced by expanded graphite. Compos Sci Technol 67(2):231–237

    CAS  Google Scholar 

  31. 31.

    Sanli A, Benchirouf A, Müller C, Kanoun O (2017) Piezoresistive performance characterization of strain sensitive multi-walled carbon nanotube-epoxy nanocomposites. Sens Actuators A 254:61–68

    CAS  Google Scholar 

  32. 32.

    Etika KC, Liu L, Hess LA, Grunlan JC (2009) The influence of synergistic stabilization of carbon black and clay on the electrical and mechanical properties of epoxy composites. Carbon 47:3128–3136

    CAS  Google Scholar 

  33. 33.

    Kim Y, Cha JY, Ham H, Huh H, So D, Kang I (2011) Preparation of piezoresistive nano smart hybrid material based on graphene. Curr Appl Phys 11:S350–S352

    Google Scholar 

  34. 34.

    Wang X, Chung DDL (1995) Short-carbon-fiber-reinforced epoxy as a piezoresistive strain sensor. Smart Mater Struct 4(4):363

    Google Scholar 

  35. 35.

    Wichmann MHG, Buschhorn ST, Boger L, Adelung R, Schulte K (2008) Direction sensitive bending sensors based on multi-wall carbon nanotube/epoxy nanocomposites. Nanotechnology 19:475503

    PubMed  Google Scholar 

  36. 36.

    Moriche R, Jiménez-Suárez A, Prolongo SC, Ureña A (2016) Strain monitoring mechanisms of sensors based on the addition of graphene nanoplatelets into an epoxy matrix. Compos Sci Technol 123:65–70

    CAS  Google Scholar 

  37. 37.

    Lin LY, Lee JH, Hong CE, Yoo GH, Advani SG (2006) Preparation and characterization of layered silicate/glass fiber/epoxy hybrid nanocomposites via vacuum-assisted resin transfer molding (VARTM). Compos Sci Technol 66(13):2116–2125

    CAS  Google Scholar 

  38. 38.

    Montazeri A, Javadpour J, Khavandi A, Tcharkhtchi A, Mohajeri A (2010) Mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater Des 31(9):4202–4208

    CAS  Google Scholar 

  39. 39.

    Brouwer WD, Van Herpt ECFC, Labordus M (2003) Vacuum injection moulding for large structural applications. Compos A Appl Sci Manuf 34(6):551–558

    Google Scholar 

  40. 40.

    Huang JC (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21:299–313

    CAS  Google Scholar 

  41. 41.

    Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate polymer composites. Compos B Eng 39(6):933–961

    Google Scholar 

  42. 42.

    Tchoudakov R, Breuer O, Narkis M, Siegmann A (1996) Conductive polymer blends with low carbon black loading: polypropylene/polyamide. Polym Eng Sci 36(10):1336–1346

    CAS  Google Scholar 

  43. 43.

    Zheng S, Deng J, Yang L, Ren D, Huang S, Yang W, Liu UZ, Yang M (2014) Investigation on the piezoresistive behavior of high-density polyethylene/carbon black films in the elastic and plastic regimes. Compos Sci Technol 97:34–40

    CAS  Google Scholar 

Download references

Acknowledgements

We thank PPGMat from UFMT-CUA, GPol from UNESP-ISA, FAPEMAT, CNPq, and Orion.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dionatas Hoffmann Andreghetto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andreghetto, D.H., Fuzari, G.C. Piezoresistive epoxy resin films with carbon black particles for small-strain sensors. Polym. Bull. 77, 3725–3734 (2020). https://doi.org/10.1007/s00289-019-02908-7

Download citation