The effect of palm oil fuel ash (POFA) and polyvinyl alcohol (PVA) on the physico-mechanical, thermal and morphological properties of hybrid bio-composites

Abstract

This study focuses on the effects of palm oil fuel ash (POFA) and polyvinyl alcohol (PVA) on the physico-mechanical, thermal and morphological properties of kenaf-/jute-reinforced polyvinyl alcohol (PVA)/polyethylene (PE) hybrid bio-composites. The fibers were dried in an oven and mixed with PE and PVA at different fiber loadings, respectively (5 wt%, 10 wt%, 15 wt% and 20 wt%). The samples were prepared and tested according to ASTM standards. The scanning electron microscope shows that PVA reduces the agglomeration and increases the bonding between fiber and matrix. Jute/kenaf—PE/PVA composites (JKPEPVAC), show a higher tensile strength and Young’s modulus compared to jute/kenaf—PE composites (JKPEC), and jute/kenaf—PE/POFA composites (JKPEPOFAC). The composites have better compatibility between fiber, matrix and the PVA composite, which shows desirable properties and performances. TGA and DSC analysis confirms that the JKPEPOFAC has a higher thermal decomposition and activation energy and more thermal stability than JKPEC and JKPEPVAC.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Khan JA, Khan MA, Islam R (2012) Effect of mercerization on mechanical, thermal and degradation characteristics of jute fabric-reinforced polypropylene composites. Fibers Polym 13:1300–1309. https://doi.org/10.1007/s12221-012-1300-8

    CAS  Article  Google Scholar 

  2. 2.

    Ahmed KS, Vijayarangan S (2008) Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites. J Mater Process Technol 207:330–335. https://doi.org/10.1016/j.jmatprotec.2008.06.038

    CAS  Article  Google Scholar 

  3. 3.

    Aggarwal PK, Raghu N, Karmarkar A, Chuahan S (2013) Jute–polypropylene composites using m-TMI-grafted-polypropylene as a coupling agent. Mater Des 43:112–117. https://doi.org/10.1016/j.matdes.2012.06.026

    CAS  Article  Google Scholar 

  4. 4.

    Bledzki AK, Mamun AA, Faruk O (2007) Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites. eXPRESS Polym Lett 1:755–762. https://doi.org/10.3144/expresspolymlett.2007.104

    CAS  Article  Google Scholar 

  5. 5.

    Ozturk B (2010) Hybrid effect in the mechanical properties of jute/rockwool hybrid fibres reinforced phenol formaldehyde composites. Fiber Polym 11:464–473

    CAS  Article  Google Scholar 

  6. 6.

    Zaman HU, Khan MA, Khan RA, Rahman MA, Das LR, Al-Mamun M (2010) Role of potassium permanganate and urea on the improvement of the mechanical properties of jute polypropylene composites. Fibers Polym 11:455–463. https://doi.org/10.1007/s12221-010-0455-4

    CAS  Article  Google Scholar 

  7. 7.

    Jahan MS, Saeed A, He Z, Ni Y (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18:451–459. https://doi.org/10.1007/s10570-010-9481-z

    CAS  Article  Google Scholar 

  8. 8.

    Sengupta S, Debnath S (2012) Studies on jute based ternary blended yarns. Indian J Fiber Text Res 37:217–223

    Google Scholar 

  9. 9.

    Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336. https://doi.org/10.1002/(SICI)1097-4628(19960222)59:8%3c1329:AID-APP17%3e3.0.CO;2-0

    CAS  Article  Google Scholar 

  10. 10.

    Herrera-Franco PJ, Valadez-González A (2005) A study of the mechanical properties of short natural-fiber reinforced composites. Compos Part B Eng 36:597–608. https://doi.org/10.1016/j.compositesb.2005.04.001

    CAS  Article  Google Scholar 

  11. 11.

    Rowell RM, Sanadi A, Jacobson R, Caulfield D (1999) Properties of kenaf/polypropylene composites. In: Sellers T, Reichert NA (eds) Kenaf properties, processing and products, 1st edn. Mississippi State University, Starkville, pp 381–392

    Google Scholar 

  12. 12.

    Rashdi AAA, Sapuan SM, Ahmed MMHM, Kalina A (2009) Water absorption and tensile properties of soil buried kenaf fibre reinforced unsaturated polyester composites (KFRUPC). J Food Agric Environ 7:908–911

    CAS  Google Scholar 

  13. 13.

    Abdullah K, Hussin MW, Zakaria F, Muhamad R, Abdul Hamid Z (2006) POFA: a potential partial cement replacement material in aerated concrete. In: 6th Asia–Pacific structural engineering and construction conference, 5–6 September 2006, Kuala Lumpur, Malaysia. https://eprints.utm.my/id/eprint/377/1/KAbdullah2006_POFAPotentialPartialCementReplacement.pdf

  14. 14.

    Lim SK, Tan CS, Lim OY, Lee YL (2013) Fresh and hardened properties of lightweight foamed concrete with palm oil fuel ash as filler. Constr Build Mater 46:39–47. https://doi.org/10.1016/j.conbuildmat.2013.04.015

    Article  Google Scholar 

  15. 15.

    Tangchirapat W, Saeting T, Jaturapitakkul C, Kiattikomol K, Siripanichgorn A (2007) Use of waste ash from palm oil industry in concrete. Waste Manag 27:81–88. https://doi.org/10.1016/j.wasman.2005.12.014

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Sinsiri T, Kroehong W, Jaturapitakkul C, Chindaprasirt P (2012) Assessing the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste. Mater Des 42:424–433. https://doi.org/10.1016/j.matdes.2012.06.030

    CAS  Article  Google Scholar 

  17. 17.

    Sata V, Jaturapitakkul C, Chaiyanunt R (2010) Compressive strength and heat evolution of concretes containing palm oil fuel ash. J Mater Civ Eng 22:1033–1038. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000104

    CAS  Article  Google Scholar 

  18. 18.

    Tangchirapat W, Jaturapitakkul C, Chindaprasirt P (2009) Use of palm oil fuel ash as a supplementary cementitous material for producing high-strength concrete. Construct Build Mater 23:2641–2646. https://doi.org/10.1016/j.conbuildmat.2009.01.008

    Article  Google Scholar 

  19. 19.

    Sata V, Jaturapitakkul C, Kiattikomol K (2004) Utilization of palm oil fuel ash in high-strength concrete. J Mater Civ Eng 16:623–628. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(623)

    CAS  Article  Google Scholar 

  20. 20.

    Tangchirapat W, Tangpagasit J, Waew-kum S, Jaturapitakkul C (2003) A new pozzolanic material from palm oil fuel ash. KMUTT Res Dev J 26:459–473

    Google Scholar 

  21. 21.

    Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18:351–363. https://doi.org/10.1002/(SICI)1098-2329(199924)18:4%3c351:AID-ADV6%3e3.0.CO;2-X

    CAS  Article  Google Scholar 

  22. 22.

    Brydson JA (1975) Plastic materials. News Butterworths, New York

    Google Scholar 

  23. 23.

    Miah MJ, Ahmed F, Hossain A, Khan AH, Khan MA (2005) Study on mechanical and dielectric properties of jute fiber reinforced low-density polyethylene (LDPE) composites. Polym Plast Technol Eng 44:1443–1456. https://doi.org/10.1081/200048718

    CAS  Article  Google Scholar 

  24. 24.

    Jawaid JM, Abdul Khalil HPS, Alattas OS (2012) Woven hybrid biocomposites: dynamic mechanical and thermal properties. Compos Part A Appl Sci Manuf 43:288–293. https://doi.org/10.1016/j.compositesa.2011.11.001

    CAS  Article  Google Scholar 

  25. 25.

    Mohanty AK, Misra M, Drazal LT (2005) Natural fibers, biopolymers, and biocomposites. Taylor & Francis, London

    Google Scholar 

  26. 26.

    Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33. https://doi.org/10.1007/s10924-006-0042-3

    CAS  Article  Google Scholar 

  27. 27.

    Ramesh M, Palanikumar K, Reddy KH (2013) Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites. Compos Part B 48:1–9. https://doi.org/10.1016/j.compositesb.2012.12.004

    CAS  Article  Google Scholar 

  28. 28.

    ASTM E168-16 (2016) Standard practices for general techniques of infrared quantitative analysis. ASTM International, West Conshohocken. https://doi.org/10.1520/E0168-16

    Google Scholar 

  29. 29.

    ASTM E1252-98 (2013) Standard practice for general techniques for obtaining infrared spectra for qualitative analysis. ASTM International, West Conshohocken. https://doi.org/10.1520/E1252-98R13E01

    Google Scholar 

  30. 30.

    ASTM E2015-04 (2014) Standard guide for preparation of plastics and polymeric specimens for microstructural examination. ASTM International, West Conshohocken. https://doi.org/10.1520/E2015-04

    Google Scholar 

  31. 31.

    ASTM D638-14 (2014) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken. https://doi.org/10.1520/D0638-14

    Google Scholar 

  32. 32.

    ASTM D570-98 (2018) Standard test method for water absorption of plastics. ASTM International, West Conshohocken. https://doi.org/10.1520/D0570-98R18

    Google Scholar 

  33. 33.

    ASTM E1868-10 (2015) Standard test methods for loss-on-drying by thermogravimetry. ASTM International, West Conshohocken. https://doi.org/10.1520/E1868-10

    Google Scholar 

  34. 34.

    ASTM E1131-08 (2014) Standard test method for compositional analysis by thermogravimetry. ASTM International, West Conshohocken. https://doi.org/10.1520/E1131-08R14

    Google Scholar 

  35. 35.

    ASTM D3418-15 (2015) Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. ASTM International, West Conshohocken. https://doi.org/10.1520/D3418-15

    Google Scholar 

  36. 36.

    ASTM E1269-11 (2018) Standard test method for determining specific heat capacity by differential scanning calorimetry. ASTM International, West Conshohocken. https://doi.org/10.1520/E1269-11R18

    Google Scholar 

  37. 37.

    Othman N, Ismail H, Mariatti M (2006) Effect of compatibilizers on mechanical and thermal properties of bentonite filled polypropylene composites. Polym Degrad Stab 91:1761–1774. https://doi.org/10.1016/j.polymdegradstab.2005.11.022

    CAS  Article  Google Scholar 

  38. 38.

    Rahman MR, Islam MN, Huque MM, Hamdan S, Ahmed AS (2010) Effect of chemical treatment on rice husk (rh) reinforced polyethylene (pe) composites. BioResources 5:854–869. https://doi.org/10.15376/biores.5.2.854-869

    CAS  Article  Google Scholar 

  39. 39.

    Chan M-l, Lau K-t, Wong TT, Cardona F (2011) Interfacial bonding characteristic of nanoclay/polymer composites. Appl Surf Sci 258:860–864. https://doi.org/10.1016/j.apsusc.2011.09.016

    CAS  Article  Google Scholar 

  40. 40.

    Rosa IMD, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122. https://doi.org/10.1016/j.compscitech.2009.09.013

    CAS  Article  Google Scholar 

  41. 41.

    Sinha E, Rout SK (2008) Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute. J Mater Sci 43:2590–2601. https://doi.org/10.1007/s10853-008-2478-4

    CAS  Article  Google Scholar 

  42. 42.

    Islam MS, Jeffrey SC, Miao M (2011) Effect of removing polypropylene fibre surface finishes on mechanical performance of kenaf/polypropylene composites. Compos Part A Appl Sci Manuf 42:1687–1693. https://doi.org/10.1016/j.compositesa.2011.07.023

    CAS  Article  Google Scholar 

  43. 43.

    Arun KJ, Francis PJJ, Joseph R (2010) Mechanical properties of nr latex-nano silica composites. Optoelectron Adv Mater Rapid Commun 4:1520–1525

    CAS  Google Scholar 

  44. 44.

    Hossain MK, Dewan MW, Hosur M, Jeelani S (2011) Mechanical performances of surface modified jute fiber reinforced biopol nanophased green composites. Compos Part B Eng 42:1701–1707. https://doi.org/10.1016/j.compositesb.2011.03.010

    CAS  Article  Google Scholar 

  45. 45.

    Raghavendra G, Ojha S, Acharya SK, Pal SK (2014) Jute fiber reinforced epoxy composites and comparison with the glass and neat epoxy composites. J Compos Mater 48:2537–2547. https://doi.org/10.1177/0021998313499955

    CAS  Article  Google Scholar 

  46. 46.

    Morshed MM, Alam MM, Daniels SM (2012) Moisture removal from natural jute fibre by plasma drying process. Plasma Chem Plasma Process 32:249–258. https://doi.org/10.1007/s11090-011-9340-1

    CAS  Article  Google Scholar 

  47. 47.

    Wielage B, Lampke T, Mark G, Nestler K, Starke D (1999) Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene. Thermochim Acta 337:169–177. https://doi.org/10.1016/S0040-6031(99)00161-6

    CAS  Article  Google Scholar 

  48. 48.

    Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    CAS  Article  Google Scholar 

  49. 49.

    Deka BK, Maji TK (2013) Effect of SiO2 and nanoclay on the properties of wood polymer nanocomposite. Polym Bull 70:403–417. https://doi.org/10.1007/s00289-012-0799-6

    CAS  Article  Google Scholar 

  50. 50.

    Ball R, McIntosh AC, Brindley J (2004) Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments. Combust Theory Model 8:281–291. https://doi.org/10.1088/1364-7830/8/2/005

    CAS  Article  Google Scholar 

  51. 51.

    Al-Sagheer F, Muslim S (2010) Thermal and mechanical properties of chitosan/SiO2 hybrid composites. J Nanomater 2010:1–7. https://doi.org/10.1155/2010/490679

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of Universiti Malaysia Sarawak (UNIMAS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Md. Rezaur Rahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.R., Hamdan, S., Jayamani, E. et al. The effect of palm oil fuel ash (POFA) and polyvinyl alcohol (PVA) on the physico-mechanical, thermal and morphological properties of hybrid bio-composites. Polym. Bull. 77, 3523–3535 (2020). https://doi.org/10.1007/s00289-019-02903-y

Download citation