Skip to main content

Preparation and physicochemical study of jute and glass composites of epoxy resin of (2E, 6E)-bis(4-hydroxybenzylidene)cyclohexanone


Jute and glass composites of epoxy resin of (2E, 6E)-bis(4-hydroxybenzylidene)cyclohexanone (EBHBC) were prepared by compressing molding technique using three different hardeners at 150/120 °C for 3 h under 20 MPa pressure. J-EBHBC-DDM, J-EBHBC-DDS, J-EBHBC-THPA, G-EBHBC-DDS and G-EBHBC-THPA possess 9.8, 19.0, 15.8, 42.9 and 46.7 MPa tensile strength; 93.6, 24.9, 95.0, 97.9 and 184.2 MPa flexural strength; 5.6, 2.9, 3.0, 20.2 and 7.7 kV/mm electric strength; and 4.24 × 109, 2.91 × 1010, 1.35 × 109, 2.78 × 1011 and 2.23 × 1011 Ω cm volume resistivity. The nature and structure of the hardeners have affected mechanical and electrical properties of the jute and glass composites. Water absorption behavior of composites is tested in pure water and 10% each of aqueous HCl, H2SO4, HNO3, NaOH, KOH, NaCl solutions at 35 °C as well as in boiling water. Nature of electrolytes has affected water absorption and diffusivity of solvated water in the composites. Both types of the composites showed excellent hydrolytic stability, high water absorption tendency and longer equilibrium time. Water absorption behavior in the composites was found quite different in different environments indicating different diffusivity in different environments. The composites may be useful for low load bearing housing, electrical and marine applications.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Singha AS, Thakur VK (2009) Synthesis and characterization of short grewia optiva fiber based polymer composites. Polym Compos 31:459–470

    Google Scholar 

  2. 2.

    Singha AS, Thakur VK (2009) Chemical resistance, mechanical and physical properties of biofibers-based polymer composites. Polym Plast Technol Eng 48:736–744

    CAS  Article  Google Scholar 

  3. 3.

    Alkbir MFM, Sapuan SM, Nuraini AA, Ishak MR (2016) Fibre properties and crash worthiness parameters of natural fiber-reinforced composite structure. A literature review. Compos Struct 148:59–73

    Article  Google Scholar 

  4. 4.

    Gupta M, Srivastava R (2017) Mechanical, thermal and dynamic mechanical analysis of jute fibre reinforced epoxy composite. Indian J Fibre Text Res 42:64–71

    CAS  Google Scholar 

  5. 5.

    Sahari J, Sapuan SM, Zainudin ES, Maleque MA (2013) Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Mater Des 49:285–289

    CAS  Article  Google Scholar 

  6. 6.

    Gupta M, Srivastava R (2014) Tensile and flexural properties of sisal fibre reinforced epoxy composite: a comparison between unidirectional and mat form of fibres. Procedia Mater Sci 5:2434–2439

    CAS  Article  Google Scholar 

  7. 7.

    Ramnath BV, Kokan S, Raja RN, Sathyanarayanan R, Elanchezhian C, Prasad AR, Manickavasagam VM (2013) Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Mater Des 51:357–366

    Article  Google Scholar 

  8. 8.

    Gupta M, Srivastava R (2015) Effect of sisal fibre loading on dynamic mechanical analysis and water absorption behaviour of jute fibre epoxy composite. Mater Today Proc 2:2909–2917

    Article  Google Scholar 

  9. 9.

    Clemons C, Sanadi AR (2007) Instrumented impact testing of kenaf fiber reinforced polypropylene composites: effects of temperature and composition. J Reinf Plast Compos 26:1587–1602

    CAS  Article  Google Scholar 

  10. 10.

    Patel VA, Bhuva BD, Parsania PH (2009) Performance evaluation of treated–untreated jute–carbon and glass–carbon hybrid composites of bisphenol-C based mixed epoxy–phenolic resins. J Reinf Plast Compos 28:2549–2556

    CAS  Article  Google Scholar 

  11. 11.

    Patel VA, Parsania PH (2010) Performance evaluation of alkali and acrylic acid treated-untreated jute composites of mixed epoxyphenolic resins. J Reinf Plast Compos 29:725–730

    CAS  Article  Google Scholar 

  12. 12.

    Patel VA, Parsania PH (2010) Preparation and physico-chemical study of glass-sisal (treated-untreated) hybrid composites of bisphenol-C based mixed epoxy–phenolic resins. J Reinf Plast Compos 29:52–59

    CAS  Article  Google Scholar 

  13. 13.

    Dunne R, Desai D, Sadiku R, Jayaramudu J (2016) A review of natural fibres, their sustainability and automotive applications. J Reinf Plast Compos 35:1041–1050

    CAS  Article  Google Scholar 

  14. 14.

    Chaudhary V, Gohil PP, Shaikh AA (2015) Development of potential composites through natural fiber reinforcement. J Sci Ind Res 74:93–97

    CAS  Google Scholar 

  15. 15.

    Patel Jignesh P, Parsania PH (2018) Biodegradable and biocompatible polymer composites. Elsevier, Oxford

    Google Scholar 

  16. 16.

    Sathishkumar TP, Navaneethakrishnan P, Shankar S, Rajasekar R (2013) Characterization of new cellulose sansevieria ehrenbergii fibers for polymer composites. Compos Interfaces 20:575–593

    CAS  Article  Google Scholar 

  17. 17.

    Gebai SS, Hallal AM, Hammoud MS (eds) (2018) Mechanical properties of natural fiber reinforced polymers: emerging research and opportunities: emerging research and opportunities. IGI Global, Hershey

    Google Scholar 

  18. 18.

    Gujjala R, Ojha S, Acharya SK, Pal SK (2014) Mechanical properties of woven jute–glass hybrid-reinforced epoxy composite. J Compos Mater 48:3445–3455

    Article  Google Scholar 

  19. 19.

    Raghavendra G, Kumar KA, Kumar MH, Raghu Kumar B, Ojha S (2017) Moisture absorption behavior and its effect on the mechanical properties of jute-reinforced epoxy composite. Polym Compos 38:516–522

    CAS  Article  Google Scholar 

  20. 20.

    Bisaria H, Gupta MK, Shandilya P, Srivastava RK (2015) Effect of fibre length on mechanical properties of randomly oriented short jute fibre reinforced epoxy composite. Mater Today Proc 2:1193–1199

    Article  Google Scholar 

  21. 21.

    Kopf PW (2000) Phenolic resins. In: Kirk-Othmer (ed) Encyclopedia of chemical technology, 5th ed, vol 18. Wiley, Hoboken, pp 756–801

    Google Scholar 

  22. 22.

    Sen S, Patil S, Argyropoulos DS (2015) Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem 17:4862–4887

    CAS  Article  Google Scholar 

  23. 23.

    Saba N, Jawaid M, Alothman OY, Paridah MT, Hassan A (2016) Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. J Reinf Plast Compos 35:447–470

    CAS  Article  Google Scholar 

  24. 24.

    Adroja Pooja P, Ghumara RY, Parsania PH (2013) Physico-chemical study of chalcone moiety containing epoxy resin and its fiber reinforced composites. Des Monomers Polym 16:503–508

    Article  Google Scholar 

  25. 25.

    Choi DH, Oh SJ, Cha HB, Lee JY (2001) Photochemically bifunctional epoxy compound containing a chalcone moiety. Eur Polym J 37:1951–1959

    CAS  Article  Google Scholar 

  26. 26.

    Vogel AI, Tatchell AR, Funis BS, Hannaford AJ, Smith PWG (1998) Vogel’s textbook of practical organic chemistry, 5th edn. Addison Wesley Longman Ltd., Boston, p 395

    Google Scholar 

  27. 27.

    Chopda Jalpa V, Sankhavara Dharmesh B, Patel Jignesh P, Parsania PH (2019) Synthesis and characterization of epoxy resin of (2E,6E)-bis(4-hydroxybenzylidene)-4-methylcyclohexanone. J Polym Mater 36:161–169

    Article  Google Scholar 

  28. 28.

    Mehta N, Parsania P (2006) Fabrication and evaluation of some mechanical and electrical properties of jute-biomass based hybrid composites. J Appl Polym Sci 100:1754–1758

    CAS  Article  Google Scholar 

  29. 29.

    Das S, Saha AK, Choudhury PK, Basak RK, Mitra BC, Todd T, Lang S, Rowell RM (2000) Effect of steam pretreatment of jute fiber on dimensional stability of jute composite. J Appl Polym Sci 76:1652–1661

    CAS  Article  Google Scholar 

  30. 30.

    Adroja Pooja P, Ghumara RY, Parsania PH (2013) Physico-chemical study of chalcone moiety containing epoxy resin and its fiber reinforced composites. Des Monomers Polym 16:503–508

    Article  Google Scholar 

  31. 31.

    Pavlidou S, Papaspyrides C (2003) The effect of hygrothermal history on water sorption and interlaminar shear strength of glass/polyester composites with different interfacial strength. Compos Part A Appl Sci Manuf 34:1117–1124

    Article  Google Scholar 

  32. 32.

    Collings T (1994) Moisture absorption–Fickian diffusion kinetics and moisture profiles. Handbook of polymer fibre composites. Longman Scientific and Technical, Harlow, pp 366–371

    Google Scholar 

  33. 33.

    Thwe MM, Liao K (2002) Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Compos Part A Appl Sci Manuf 33:43–52

    Article  Google Scholar 

  34. 34.

    Thwe MM, Liao K (2003) Environmental effects on bamboo-glass/polypropylene hybrid composites. J Mater Sci 38:363–376

    CAS  Article  Google Scholar 

  35. 35.

    Dash BN, Rana AK, Mishra HK, Nayak SK, Tripathy SS (2000) Novel low-cost jute–polyester composites. III. Weathering and thermal behavior. J Appl Polym Sci 78:1671–1679

    CAS  Article  Google Scholar 

  36. 36.

    Lin-Gibson S, Baranauskas V, Riffle JS, Sorathia U (2002) Cresol novolac–epoxy networks: properties and processability. Polymer 43:7389–7398

    CAS  Article  Google Scholar 

  37. 37.

    Tyberg CS, Bergeron K, Sankarapandian M, Shih P, Loos AC, Dillard DA, McGrath JE, Riffle JS, Sorathia U (2000) Structure–property relationships of void-free phenolic–epoxy matrix materials. Polymer 41:5053–5062

    CAS  Article  Google Scholar 

  38. 38.

    Bao L-R, Yee AF (2002) Effect of temperature on moisture absorption in a bismaleimide resin and its carbon fiber composites. Polymer 43:3987–3997

    CAS  Article  Google Scholar 

  39. 39.

    Lin Q, Zhou X, Dai G (2002) Effect of hydrothermal environment on moisture absorption and mechanical properties of wood flour–filled polypropylene composites. J Appl Polym Sci 85:2824–2832

    CAS  Article  Google Scholar 

  40. 40.

    Espert A, Vilaplana F, Karlsson S (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos Part A Appl Sci Manuf 35:1267–1276

    Article  Google Scholar 

Download references


The authors are thankful to FIST-DST and SAP-UGC for their generous financial support for instrumentation support to the Department of Chemistry. P. H. Parsania and Dharmesh B. Sankhavara are also thankful to University Grants Commission—New Delhi, for BSR Faculty Fellowship (F.No.18-1/2011 (BSR), February 15, 2016) and Junior Research Fellowship.

Author information



Corresponding author

Correspondence to P. H. Parsania.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parsania, P.H., Sankhavara, D.B., Chopda, J. et al. Preparation and physicochemical study of jute and glass composites of epoxy resin of (2E, 6E)-bis(4-hydroxybenzylidene)cyclohexanone. Polym. Bull. 77, 3111–3128 (2020).

Download citation


  • Composites
  • Tensile strength flexural strength
  • Electric strength
  • Volume resistivity
  • Water absorption