p-Phenylenediamine-grafted multi-walled carbon nanotubes as a hydrophilic modifier in thin-film nanocomposite membrane

Abstract

In this paper, an efficient thin-film nanocomposite (TFN) membrane was synthesized by interfacial polymerization and used for water desalination. Piperazine (PIP) and trimesoyl chloride were used as monomers, and p-phenylenediamine-grafted multi-walled carbon nanotube (p-PDA-MWCNT) was used as a hydrophilic modifier to enhance the performance of the polysulfone nanofiltration membrane. In order to characterize the synthesized p-PDA-MWCNTs, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and electron-dispersive spectroscopy were used. In order to enhance the performance of the membrane, different concentrations of p-PDA-MWCNTs (0.01, 0.02, 0.04, 0.05 and 0.075 wt%) were added to the PIP solution to prepare p-PDA-MWCNTs-embedded membranes. To check the performance of the modified membrane, solutions of 1000 mg L−1 Na2SO4, MgSO4, NaCl and CaCl2 were tested. The results show that TFN-modified membrane provides excellent water permeability and also salt rejection in the presence of 0.02 wt% p-PDA-MWCNTs which shows superior improvement in TFN membrane.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Tasis T, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136

    CAS  Article  Google Scholar 

  2. 2.

    Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. TrAC Trends Anal Chem 25:480–489

    CAS  Article  Google Scholar 

  3. 3.

    Endo M, Strano MS, Ajayan PM (2007) Potential applications of carbon nanotubes. Springer, Berlin

    Google Scholar 

  4. 4.

    Szleifer I, Yerushalmi-Rozen R (2005) Polymers and carbon nanotubes-dimensionality, interactions and nanotechnology. Polymer 46:7803–7818

    CAS  Article  Google Scholar 

  5. 5.

    Katz E, Willner I (2004) Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. ChemPhysChem 5:1084–1104

    CAS  Article  Google Scholar 

  6. 6.

    Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096–1104

    CAS  Article  Google Scholar 

  7. 7.

    Yola ML, Atar N (2014) A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim Acta 119:24–31

    CAS  Article  Google Scholar 

  8. 8.

    Zhang X, Huang Q, Liu M, Tian J, Zeng G, Li Z, Wang K, Zhang Q, Wan Q, Deng F, Wei Y (2015) Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal. Appl Surf Sci 343:19–27

    CAS  Article  Google Scholar 

  9. 9.

    Shatat M, Riffat SB (2014) Water desalination technologies utilizing conventional and renewable energy sources. Int J Low Carbon Technol 9:1–19

    Article  Google Scholar 

  10. 10.

    Pless JD, Philips MLF, Voigt JA, Moore D, Axness M, Krumhansl JL, Nenoff TM (2006) Desalination of brackish waters using ion-exchange media. Ind Eng Chem Res 45:4752–4756

    CAS  Article  Google Scholar 

  11. 11.

    Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res 43:2317–2348

    CAS  Article  Google Scholar 

  12. 12.

    Fadigas EAFA, Dias JR (2009) Desalination of water by reverse osmosis using gravitational potential energy and wind energy. Desalination 237:140–146

    CAS  Article  Google Scholar 

  13. 13.

    Diawara CK (2008) Nanofiltration process efficiency in water desalination. Sep Purif Rev 37:302–324

    CAS  Article  Google Scholar 

  14. 14.

    Abuhabib AA, Ghasemi M, Mohammad AW, Rahman RA, El-Shafie AH (2013) Desalination of brackish water using nanofiltration: performance comparison of different membranes. Arab J Sci Eng 38:2929–2939

    CAS  Article  Google Scholar 

  15. 15.

    Sadrzadeh M, Mohammadi T (2009) Treatment of sea water using electrodialysis: current efficiency evaluation. Desalination 249:279–285

    CAS  Article  Google Scholar 

  16. 16.

    Valero F, Arbos R (2010) Desalination of brackish river water using electrodialysis reversal (EDR): control of the THMs formation in the Barcelona (NE Spain) area. Desalination 253:170–174

    CAS  Article  Google Scholar 

  17. 17.

    Song Y, Sun P, Henry LL, Sun B (2005) Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process. J Membr Sci 251:67–79

    CAS  Article  Google Scholar 

  18. 18.

    Gholami A, Moghadassi AR, Hosseini SM, Shabani S, Gholami F (2014) Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration-membrane modified by iron oxide nanoparticles for lead removal from water. J Ind Eng Chem 20:1517–1522

    CAS  Article  Google Scholar 

  19. 19.

    Kausar A, Siddiq M (2017) Nanofiltration membranes of poly(styrene-co-chloro-methylstyrene)-grafted-DGEBA reinforced with gold and polystyrene nanoparticles for water purification. Appl Water Sci 7:1323–1335

    CAS  Article  Google Scholar 

  20. 20.

    Li JF, Xu ZL, Yang H, Yu LY, Liu M (2009) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 255:4725–4732

    CAS  Article  Google Scholar 

  21. 21.

    Baghbanzadeh M, Rana D, Matsuura T, Lan CQ (2015) Effects of hydrophilic CuO nanoparticles on properties and performance of PVDF VMD membranes. Desalination 369:75–84

    CAS  Article  Google Scholar 

  22. 22.

    Hu D, Xu ZL, Chen C (2012) Polypiperazine-amide nanofiltration membrane containing silica nanoparticles prepared by interfacial polymerization. Desalination 301:75–81

    CAS  Article  Google Scholar 

  23. 23.

    Wang Q, Zhang GS, Li ZS, Deng S, Chen H, Wang P (2014) Preparation and properties of polyamide/titania composite nanofiltration membrane by interfacial polymerization. Desalination 352:38–44

    CAS  Article  Google Scholar 

  24. 24.

    Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375:284–294

    CAS  Article  Google Scholar 

  25. 25.

    Xu J, Yao P, Li X, He F (2008) Synthesis and characterization of water-soluble and conducting sulfonated polyaniline/para-phenylenediamine-functionalized multi-walled carbon nanotubes nano-composite. Mater Sci Eng B 151:210–219

    CAS  Article  Google Scholar 

  26. 26.

    Zarrabi H, Yekavalangi ME, Vatanpour V, Shockravi A, Safarpour M (2016) Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube. Desalination 394:83–90

    CAS  Article  Google Scholar 

  27. 27.

    Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2012) Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep Purif Technol 90:69–82

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Ferdowsi University of Mashhad for the financial support of the Ph.D. project of Mr. Sina Solouki with the Grant No. of 16589.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shokouhian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shokouhian, M., Solouki, S. p-Phenylenediamine-grafted multi-walled carbon nanotubes as a hydrophilic modifier in thin-film nanocomposite membrane. Polym. Bull. 77, 3485–3498 (2020). https://doi.org/10.1007/s00289-019-02899-5

Download citation

Keywords

  • Thin-film nanocomposite membrane
  • Interfacial polymerization
  • Para-phenylenediamine-grafted multi-walled carbon nanotube
  • Desalination