Skip to main content
Log in

Prediction of breakthrough curves in packed-bed column as tool for lysozyme isolation using a green bed

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The adsorption of lysozyme onto alginate–guar gum bed cross-linked with epichlorohydrin has been studied in packed-bed column. Adsorption performance was evaluated with different bed heights, flow rates and initial protein concentrations. The Thomas and bed depth service time mathematical models fitted well the breakthrough curves experimental data with high correlation coefficients. Not modification of the working yield of the bed was observed in progressive ten cycles of reused. Lysozyme recovery of 75% was achieved from white egg with a purification factor around 15 under the condition of bed height 9 cm, flow rate 0.4 mL/min and total protein inlet 10 mg/mL, while the dynamic bed capacity under this experimental condition was 10.87 mg/g hydrated bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GG:

Guar gum

Alg:

Alginate

LZ:

Lysozyme

Epi:

Epichlorohydrin

BT:

Breakthrough

Alg–GG:

Alginate–guar gum bed

References

  1. García-Mateos FJ et al (2015) Removal of paracetamol on biomass-derived activated carbon: modeling the fixed bed breakthrough curves using batch adsorption experiments. Chem Eng J 279:18–30

    Article  CAS  Google Scholar 

  2. Fang Y et al (2011) Rehydration of dried alginate gel beads: effect of the presence of gelatin and gum arabic. Carbohydr Polym 86(3):1145–1150

    Article  CAS  Google Scholar 

  3. Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367

    Article  CAS  PubMed  Google Scholar 

  4. Almeida PF, Almeida A (2004) Cross-linked alginate–gelatine beads: a new matrix for controlled release of pindolol. J Control Release 97(3):431–439

    Article  CAS  PubMed  Google Scholar 

  5. Blackburn RS (2004) Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment. Environ Sci Technol 38(18):4905–4909

    Article  CAS  PubMed  Google Scholar 

  6. Li M, Elder T, Buschle-Diller G (2017) Alginate-based polysaccharide beads for cationic contaminant sorption from water. Polym Bull 74(4):1267–1281

    Article  CAS  Google Scholar 

  7. Vijaya Y et al (2011) Synthesis and characterization of glutaraldehyde-crosslinked calcium alginate for fluoride removal from aqueous solutions. J Appl Polym Sci 120(6):3443–3452

    Article  CAS  Google Scholar 

  8. Zhang S et al (2013) Silica modified calcium alginate–xanthan gum hybrid bead composites for the removal and recovery of Pb(II) from aqueous solution. Chem Eng J 234:33–42

    Article  CAS  Google Scholar 

  9. Paşcalău V et al (2012) The alginate/k-carrageenan ratio’s influence on the properties of the cross-linked composite films. J Alloys Compd 536:S418–S423

    Article  CAS  Google Scholar 

  10. Rodrigues EC et al (2013) Adsorption of cellulase isolated from aspergillus niger on chitosan/alginate particles functionalized with epichlorohydrin. Adsorpt Sci Technol 31(1):17–34

    Article  CAS  Google Scholar 

  11. Gondim DR et al (2012) Dye ligand epoxide chitosan/alginate: a potential new stationary phase for human IgG purification. Adsorpt Sci Technol 30(8–9):701–711

    Article  CAS  Google Scholar 

  12. Auta M, Hameed B (2014) Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem Eng J 237:352–361

    Article  CAS  Google Scholar 

  13. Roy I, Sardar M, Gupta MN (2005) Cross-linked alginate–guar gum beads as fluidized bed affinity media for purification of jacalin. Biochem Eng J 23(3):193–198

    Article  CAS  Google Scholar 

  14. Roy I, Gupta MN (2002) Purification of a bacterial pullulanase on a fluidized bed of calcium alginate beads. J Chromatogr A 950(1):131–137

    Article  CAS  PubMed  Google Scholar 

  15. Sharma S, Roy I, Gupta MN (2001) Separation of phospholipase D from peanut on a fluidized bed of crosslinked alginate beads. Biochem Eng J 8(3):235–239

    Article  CAS  Google Scholar 

  16. Brassesco ME, Valetti NW, Picó G (2017) Molecular mechanism of lysozyme adsorption onto chemically modified alginate guar gum matrix. Int J Biol Macromol 96:111–117

    Article  CAS  PubMed  Google Scholar 

  17. Srivastava V et al (2008) Prediction of breakthrough curves for sorptive removal of phenol by bagasse fly ash packed bed. Ind Eng Chem Res 47(5):1603–1613

    Article  CAS  Google Scholar 

  18. Geankoplis C (1993) Transport process and unit operations, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  19. Vijayaraghavan K, Yun Y-S (2008) Polysulfone-immobilized corynebacterium glutamicum: a biosorbent for Reactive black 5 from aqueous solution in an up-flow packed column. Chem Eng J 145(1):44–49

    Article  CAS  Google Scholar 

  20. Karimi M et al (2012) Column study of Cr(VI) adsorption onto modified silica–polyacrylamide microspheres composite. Chem Eng J 210:280–288

    Article  CAS  Google Scholar 

  21. Han R et al (2009) Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves. Desalination 245(1–3):284–297

    Article  CAS  Google Scholar 

  22. Nwabanne J, Igbokwe P (2012) Adsorption performance of packed bed column for the removal of lead (II) using oil palm fibre. Int J Appl Sci Technol 2(5):106

    Google Scholar 

  23. Aksu Z, Gönen F (2004) Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem 39(5):599–613

    Article  CAS  Google Scholar 

  24. Blanes PS et al (2016) Application of soy hull biomass in removal of Cr(VI) from contaminated waters: kinetic, thermodynamic and continuous sorption studies. J Environ Chem Eng 4(1):516–526

    Article  CAS  Google Scholar 

  25. Zulfadhly Z, Mashitah M, Bhatia S (2001) Heavy metals removal in fixed-bed column by the macro fungus Pycnoporus sanguineus. Environ Pollut 112(3):463–470

    Article  CAS  PubMed  Google Scholar 

  26. Jain M, Garg V, Kadirvelu K (2013) Cadmium (II) sorption and desorption in a fixed bed column using sunflower waste carbon calcium–alginate beads. Biores Technol 129:242–248

    Article  CAS  Google Scholar 

  27. Jang J, Lee DS (2016) Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system. Biores Technol 218:294–300

    Article  CAS  Google Scholar 

  28. Lezehari M et al (2012) Fixed-bed column studies of pentachlorophenol removal by use of alginate-encapsulated pillared clay microbeads. J Colloid Interface Sci 379(1):101–106

    Article  CAS  PubMed  Google Scholar 

  29. Chu K, Hashim M (2007) Copper biosorption on immobilized seaweed biomass: column breakthrough characteristics. J Environ Sci 19(8):928–932

    Article  CAS  Google Scholar 

  30. Long Y et al (2014) Packed bed column studies on lead (II) removal from industrial wastewater by modified Agaricus bisporus. Biores Technol 152:457–463

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from FonCyT, Project PICT 2013–271 – Argentina Innovator 2020. MEB is a fellowship from FonCyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Picó.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brassesco, M.E., Woitovich Valetti, N. & Picó, G. Prediction of breakthrough curves in packed-bed column as tool for lysozyme isolation using a green bed. Polym. Bull. 76, 5831–5847 (2019). https://doi.org/10.1007/s00289-019-02683-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02683-5

Keywords

Navigation