Explanation of main tunneling mechanism in electrical conductivity of polymer/carbon nanotubes nanocomposites by interphase percolation


In this paper, the tunneling effect as the main mechanism for charge transferring in polymer/carbon nanotubes (CNT) nanocomposites (PCNT) is correlated with interphase percolation. Soft-core and hard-core models express the percolation threshold based on a previous report. Furthermore, the tunneling effect is related to the interphase layer around the nanoparticles and the excluded volume and percolation threshold are defined for this case. The calculations of all models are compared to the experimentally measured percolation threshold in some samples. The predictions of soft-core and hard-core approaches deviate from the low percolation threshold in PCNT. It is found that the model assuming the interphase as tunneling distance can properly describe the low level of percolation threshold in PCNT. Based on this model, the effects of main parameters on the percolation threshold and the electrical conductivity of PCNT are described. The predictions demonstrate that the thin and long CNT together with the thick interphase show positive impacts on the percolation threshold and conductivity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Li J, Song Z, Gao L, Shan H (2016) Preparation of carbon nanotubes/polylactic acid nanocomposites using a non-covalent method. Polym Bull 73(8):8–2121

    Article  CAS  Google Scholar 

  2. 2.

    Zhang Y (2015) Carbon nanotubes/polyacrylic acid coating materials prepared by in situ polymerization technique. Polym Bull 72(10):26–2519

    Article  CAS  Google Scholar 

  3. 3.

    Pincheira G, Montalba C, Gacitua W, Montrieux H-M, Lecomte-Beckers J, Meléndrez M et al (2016) Study of the effect of amino-functionalized multiwall carbon nanotubes on dry sliding wear resistance properties of carbon fiber reinforced thermoset polymers. Polym Bull 73(8):301–2287

    Article  CAS  Google Scholar 

  4. 4.

    Eksin E, Bolat G, Kuralay F, Erdem A, Abaci S (2015) Preparation of gold nanoparticles/single-walled carbon nanotubes/polyaniline composite-coated electrode developed for DNA detection. Polym Bull 72(12):46–3135

    Article  CAS  Google Scholar 

  5. 5.

    Ansari R, Rouhi S, Ajori S (2018) Molecular dynamics simulations of the polymer/amine functionalized single-walled carbon nanotubes interactions. Appl Surf Sci 455:80–171

    Article  CAS  Google Scholar 

  6. 6.

    Jagtap SB, Patil VD, Suresh K, Ram F, Mohan MS, Rajput SS et al (2018) Functionalized carbon nanotube reinforced polymer nanocomposite microcapsules with enhanced stiffness. Colloids Surf A Physicochem Eng Asp 550:9–82

    Article  CAS  Google Scholar 

  7. 7.

    Wu T, Chen B (2017) Autonomous self-healing multiwalled carbon nanotube nanocomposites with piezoresistive effect. RSC Adv 7(33):9–20422

    Google Scholar 

  8. 8.

    Saboori B, Ayatollahi MR (2017) Experimental fracture study of MWCNT/epoxy nanocomposites under the combined out-of-plane shear and tensile loading. Polym Test 59:193–202

    Article  CAS  Google Scholar 

  9. 9.

    Baferani AH, Katbab A, Ohadi A (2017) The role of sonication time upon acoustic wave absorption efficiency, microstructure, and viscoelastic behavior of flexible polyurethane/CNT nanocomposite foam. Eur Polym J 90:91–383

    Google Scholar 

  10. 10.

    Mallakpour S, Behranvand V (2017) Application of recycled PET/carboxylated multi-walled carbon nanotube composites for Cd 2 + adsorption from aqueous solution: a study of morphology, thermal stability, and electrical conductivity. Colloid Polym Sci 295(3):62–453

    Article  CAS  Google Scholar 

  11. 11.

    Nikfar N, Zare Y, Rhee KY (2018) Dependence of mechanical performances of polymer/carbon nanotubes nanocomposites on percolation threshold. Phys B Condens Matter 533:69–75

    Article  CAS  Google Scholar 

  12. 12.

    Kim S, Jamalzadeh N, Zare Y, Hui D, Rhee KY (2018) Considering the filler network as a third phase in polymer/CNT nanocomposites to predict the tensile modulus using Hashin-Hansen model. Phys B Condens Matter 541:69–74

    Article  CAS  Google Scholar 

  13. 13.

    Ramesh S, Khandelwal S, Rhee KY, Hui D (2017) Synergistic effect of reduced graphene oxide, CNT and metal oxides on cellulose matrix for supercapacitor applications. Compos Part B Eng 138:45–54

    Article  CAS  Google Scholar 

  14. 14.

    Benyakhou S, Belmokhtar A, Zehhaf A, Benyoucef A (2017) Development of novel hybrid materials based on poly (2-aminophenyl disulfide)/silica gel: preparation, characterization and electrochemical studies. J Mol Struct 1150:5–580

    Article  CAS  Google Scholar 

  15. 15.

    Benykhlef S, Bekhoukh A, Berenguer R, Benyoucef A, Morallon E (2016) PANI-derived polymer/Al2O3 nanocomposites: synthesis, characterization, and electrochemical studies. Colloid Polym Sci 294(12):85–1877

    Article  CAS  Google Scholar 

  16. 16.

    Chouli F, Radja I, Morallon E, Benyoucef A (2017) A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium (IV) oxide nanoparticles: synthesis, characterization, and electrochemical properties. Polym Compos 38:E60–E254

    Article  CAS  Google Scholar 

  17. 17.

    Radja I, Djelad H, Morallon E, Benyoucef A (2015) Characterization and electrochemical properties of conducting nanocomposites synthesized from p-anisidine and aniline with titanium carbide by chemical oxidative method. Synth Met 202:25–32

    Article  CAS  Google Scholar 

  18. 18.

    Zare Y, Rhee KY (2017) Development of a conventional model to predict the electrical conductivity of polymer/carbon nanotubes nanocomposites by interphase, waviness and contact effects. Compos Part A Appl Sci Manuf 100:305–312

    Article  CAS  Google Scholar 

  19. 19.

    Zare Y, Rhee KY (2017) A simple methodology to predict the tunneling conductivity of polymer/CNT nanocomposites by the roles of tunneling distance, interphase and CNT waviness. RSC Adv 7(55):21–34912

    Article  Google Scholar 

  20. 20.

    Kara S, Arda E, Dolastir F, Pekcan Ö (2010) Electrical and optical percolations of polystyrene latex–multiwalled carbon nanotube composites. J Colloid Interface Sci 344(2):395–401

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Zare Y (2017) An approach to study the roles of percolation threshold and interphase in tensile modulus of polymer/clay nanocomposites. J Colloid Interface Sci 486:54–249

    Article  CAS  Google Scholar 

  22. 22.

    Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):55–9048

    Article  CAS  Google Scholar 

  23. 23.

    Berhan L, Sastry A (2007) Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Phys Rev E 75(4):041120

    Article  CAS  Google Scholar 

  24. 24.

    Zare Y, Rhee KY (2017) Development of a model for electrical conductivity of polymer graphene nanocomposites assuming interphase and tunneling regions in conductive networks. Ind Eng Chem Res 56:9107–9115

    Article  CAS  Google Scholar 

  25. 25.

    Zare Y, Rhee KY (2017) Development of Hashin-Shtrikman model to determine the roles and properties of interphases in clay/CaCO3/PP ternary nanocomposite. Appl Clay Sci 137:82–176

    Article  CAS  Google Scholar 

  26. 26.

    Zare Y, Rhee KY (2017) Dependence of Z parameter for tensile strength of multi-layered interphase in polymer nanocomposites to material and interphase properties. Nanoscale Res Lett 12(1):42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Zare Y, Rhee KY (2017) Development and modification of conventional Ouali model for tensile modulus of polymer/carbon nanotubes nanocomposites assuming the roles of dispersed and networked nanoparticles and surrounding interphases. J Colloid Interface Sci 506:90–283

    Google Scholar 

  28. 28.

    Zare Y, Rhee KY, Park S-J (2017) Predictions of micromechanics models for interfacial/interphase parameters in polymer/metal nanocomposites. Int J Adhes Adhes 79:6–111

    Article  CAS  Google Scholar 

  29. 29.

    Razavi R, Zare Y, Rhee KY (2018) A model for tensile strength of polymer/carbon nanotubes nanocomposites assuming the percolation of interphase regions. Colloids Surf A 538:54–148

    Article  CAS  Google Scholar 

  30. 30.

    H-x Li, Zare Y, Rhee KY (2018) The percolation threshold for tensile strength of polymer/CNT nanocomposites assuming filler network and interphase regions. Mater Chem Phys 207:76–83

    Article  CAS  Google Scholar 

  31. 31.

    Qiao R, Brinson LC (2009) Simulation of interphase percolation and gradients in polymer nanocomposites. Compos Sci Technol 69(3):9–491

    Google Scholar 

  32. 32.

    Lu P, Leong Y, Pallathadka P, He C (2013) Effective moduli of nanoparticle reinforced composites considering interphase effect by extended double-inclusion model–theory and explicit expressions. Int J Eng Sci 73:33–55

    Article  Google Scholar 

  33. 33.

    Baxter SC, Robinson CT (2011) Pseudo-percolation: critical volume fractions and mechanical percolation in polymer nanocomposites. Compos Sci Technol 71(10):9–1273

    Article  CAS  Google Scholar 

  34. 34.

    Kim YJ, Shin TS, Do Choi H, Kwon JH, Chung Y-C, Yoon HG (2005) Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43(1):23–30

    Article  CAS  Google Scholar 

  35. 35.

    Maiti S, Shrivastava NK, Khatua B (2013) Reduction of percolation threshold through double percolation in melt- blended polycarbonate/acrylonitrile butadiene styrene/multiwall carbon nanotubes elastomer nanocomposites. Polym Compos 34(4):9–570

    Article  CAS  Google Scholar 

  36. 36.

    Lisunova M, Mamunya YP, Lebovka N, Melezhyk A (2007) Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur Polym J 43(3):58–949

    Article  CAS  Google Scholar 

  37. 37.

    McClory C, McNally T, Baxendale M, Pötschke P, Blau W, Ruether M (2010) Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality. Eur Polym J 46(5):68–854

    Article  CAS  Google Scholar 

  38. 38.

    Balberg I (2002) A comprehensive picture of the electrical phenomena in carbon black–polymer composites. Carbon 40(2):43–139

    Article  Google Scholar 

  39. 39.

    Shekhar S, Sajitha E, Prasad V, Subramanyam S (2008) High coercivity below percolation threshold in polymer nanocomposite. J Appl Phys 104(8):083910

    Article  CAS  Google Scholar 

  40. 40.

    Chao H, Riggleman RA (2013) Effect of particle size and grafting density on the mechanical properties of polymer nanocomposites. Polymer 54(19):9–5222

    Article  CAS  Google Scholar 

  41. 41.

    Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39(6):61–933

    Article  CAS  Google Scholar 

  42. 42.

    Arenhart R, Barra G, Fernandes C (2016) Simulation of percolation threshold and electrical conductivity in composites filled with conductive particles: effect of polydisperse particle size distribution. Polym Compos 37(1):9–61

    Article  CAS  Google Scholar 

  43. 43.

    Shin H, Yang S, Choi J, Chang S, Cho M (2015) Effect of interphase percolation on mechanical behavior of nanoparticle-reinforced polymer nanocomposite with filler agglomeration: a multiscale approach. Chem Phys Lett 635:5–80

    Article  CAS  Google Scholar 

  44. 44.

    Zare Y, Rhee KY (2018) A simple model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the filler properties, interphase dimension, network level, interfacial tension and tunneling distance. Compos Sci Technol 155:60–252

    Article  CAS  Google Scholar 

  45. 45.

    Chatterjee AP (2006) A model for the elastic moduli of three-dimensional fiber networks and nanocomposites. J Appl Phys 100(5):054302

    Article  CAS  Google Scholar 

  46. 46.

    Razavi R, Zare Y, Rhee KY (2017) A two-step model for the tunneling conductivity of polymer carbon nanotube nanocomposites assuming the conduction of interphase regions. RSC Adv 7(79):33–50225

    Article  Google Scholar 

  47. 47.

    Yeganeh JK (2018) Dynamics of nucleation and growth mechanism in the presence of nanoparticles or block copolymers: polystyrene/poly (vinyl methyl ether). Polym Bull 75(1):1–15

    Article  CAS  Google Scholar 

  48. 48.

    Abdolmaleki A, Mallakpour S, Borandeh S (2013) Amino acid-functionalized multi-walled carbon nanotubes for improving compatibility with chiral poly (amide-ester-imide) containing l-phenylalanine and l-tyrosine linkages. Appl Surf Sci 287:23–117

    Article  CAS  Google Scholar 

  49. 49.

    Orgilés-Calpena E, Arán-Aís F, Torró-Palau AM, Orgilés-Barceló C (2013) Chemical functionalization and dispersion of carbon nanofibers in waterborne polyurethane adhesives. J Adhes 89(3):91–174

    Article  CAS  Google Scholar 

  50. 50.

    Park S, Bandaru P (2010) Improved mechanical properties of carbon nanotube/polymer composites through the use of carboxyl-epoxide functional group linkages. Polymer 51(22):7–5071

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Wanxi Peng or Mohsen Sarafbidabad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Peng, W., Sarafbidabad, M. et al. Explanation of main tunneling mechanism in electrical conductivity of polymer/carbon nanotubes nanocomposites by interphase percolation. Polym. Bull. 76, 5717–5731 (2019). https://doi.org/10.1007/s00289-018-2669-3

Download citation


  • Polymer/CNT nanocomposites
  • Tunneling mechanism
  • Interphase
  • Percolation threshold
  • Hard-core model