The comparative investigation on synthesis, characterizations of silver ion-imprinting and non-imprinting cryogels, their impedance spectroscopies and relaxation mechanisms

Abstract

In the present study, a novel ion-imprinting and non-imprinting cryogel samples have been prepared using ion-imprinting technique and the dielectric properties have been investigated using an impedance spectroscopy method. In the preparation of ion-imprinted cryogel, at the first attempt, N-methacryloly-(l)-cysteine methyl ester was used as the metal complexing monomer. Ag+-imprinted poly(hydroxyethyl methacrylate-N-methacryloly-(l)-cysteine methyl ester) cryogel was produced by bulk polymerization. Poly(2-hydroxyethyl methacrylate) was selected as the basic matrix by considering properties, high chemical and mechanical stability. After removal of template (silver ions), the ion-imprinted cryogel was used for the removal of photo-film-containing materials. The dielectric properties of cryogel samples have also been investigated by impedance spectroscopy within the frequency range of 1 Hz–10 MHz. The real part of the permittivity increases at low frequencies as electrode effects become dominant. It shows a constant value at high frequencies due to dipole polarization. On the other hand, the imaginary part does not show a relaxation peak as the relaxation time of samples is very short. The frequency dependence of electrical modulus has also been investigated. The real part of electrical modulus (M′ (f)) is an indicative of negligible electrode polarization phenomenon in the test material. The behavior of the imaginary part of frequency dependent electrical modulus (M″ (f)) exhibit that the dielectric relaxation process is usually not frequency-activated state. Dielectric relaxation process occurs spontaneously due to the hopping mechanism of charge carriers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Ramstrom O, Mosbach K (1999) Synthesis and catalysis by molecularly imprinted materials. Curr Opin Chem Biol 3:759–764

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Rao T, Daniel TP, Gladis JM (2004) Tailored materials for preconcentration or separation of metals by ion-imprinted polymers for solid-phase extraction (IIP-SPE). Trends Anal Chem 23:28–35

    Article  CAS  Google Scholar 

  3. 3.

    Mosbach K, Ramström O (1996) The emerging technique of molecular imprinting and its future impact on biotechnology. Nat Biotechnol 14:163–170

    Article  CAS  Google Scholar 

  4. 4.

    Wackerling J, Lieberzeit AP (2015) Molecularly imprinted polymer nanoparticles in chemical sensing—synthesis, characterisation and application. Sens Actuators B Chem 207:144–157

    Article  CAS  Google Scholar 

  5. 5.

    Demirel G, Ozcetin G, Turan E, Caykara T (2005) pH/temperature–sensitive imprinted ionic poly(N-tert-butylacrylamide-co-acrylamide/maleic acid) hydrogels for bovine serum albumin. Macromol Biosci 5:1032–1037

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Shiomi T, Matsui M, Mizukami F, Sakaguchi K (2005) A method for the molecular imprinting of hemoglobin on silica surfaces using silanes. Biomaterials 27:5564–5571

    Article  CAS  Google Scholar 

  7. 7.

    Wei S, Mizaikoff B (2007) Binding site characteristics of 17β-estradiol imprinted polymers. Biosens Bioelectr 23:201–209

    Article  CAS  Google Scholar 

  8. 8.

    Li Y, Yang HH, You QH, Zhuang ZX, Wang XR (2006) Protein recognition via surface molecularly imprinted polymer nanowires. Anal Chem 78:317–320

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Perçin I, Sener G, Demirçelik AH, Bereli N, Denizli A (2015) Comparison of two different reactive dye immobilized poly(hydroxyethyl methacrylate) cryogel discs for purification of lysozyme. Appl Biochem Biotechnol 175:2795–2805

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Haginaka J (2008) Monodispersed, molecularly imprinted polymers as affinity-based chromatography media. J Chromatogr B 866:3–13

    Article  CAS  Google Scholar 

  11. 11.

    Say R, Birlik E, Ersöz A, Yilmaz F, Gedikbey T, Denizli A (2003) Preconcentration of copper on ion-selective imprinted polymer microbeads. Anal Chim Acta 480:251–258

    Article  CAS  Google Scholar 

  12. 12.

    Say R, Ersoz A, Denizli A (2003) Selective separation of uranium containing glutamic acid molecular-imprinted polymeric microbeads. Sep Sci Technol 38:3431–3447

    Article  CAS  Google Scholar 

  13. 13.

    Andac M, Say R, Denizli A (2004) Molecular recognition based cadmium removal from human plasma. J Chromatogr B 811:119–126

    Article  CAS  Google Scholar 

  14. 14.

    Ersoz A, Say R, Denizli A (2004) Ni (II) ion-imprinted solid-phase extraction and preconcentration in aqueous solutions by packed-bed columns. Anal Chim Acta 502:91–97

    Article  CAS  Google Scholar 

  15. 15.

    Yavuz H, Say R, Denizli A (2005) Iron removal from human plasma based on molecular recognition using imprinted beads. Mater Sci Eng C 25:521–528

    Article  CAS  Google Scholar 

  16. 16.

    Ersoz A, Denizli A, Ozcan A, Say R (2005) Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance. Biosens Bioelectr 20:2197–2202

    Article  CAS  Google Scholar 

  17. 17.

    Pang X, Cheng G, Lu S, Tang E (2006) Synthesis of polyacrylamide gel beads with electrostatic functional groups for the molecular imprinting of bovine serum albumin. Anal Bioanal Chem 384:225–230

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Lozinsky VI, Plieva FM, Galaev IY, Mattiasson B (2002) The potential of polymeric cryogels in bioseparation. Bioseparation. 10:163–188

    Article  Google Scholar 

  19. 19.

    Çavuş A, Baysal Z, Alkan H (2013) Preparation of poly(hydroxyethyl methacrylate) cryogels containing l-histidine for insulin recognition. Colloids Surf B 107:84–89

    Article  CAS  Google Scholar 

  20. 20.

    Thompson T, Fawell J, Kunikane S, Jackson D, Appleyard S, Callan P, Bartram J, Kingston P (2007) Chemical safety of drinking-water: assessing priorities for risk management. World Health Organization Press, Geneva

    Google Scholar 

  21. 21.

    Pedroso MS, Pinho GLL, Rodrigues SC, Bianchini A (2007) Mechanism of acute silver toxicity in the euryhaline copepod Acartia tonsa. Aquat Toxicol 82:173–180

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Mack C, Wilhelmi B, Duncan JR, Burgess JE (2007) Research review paper: biosorption of precious metals. Biotechnol Adv 25:264–271

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    US Environmental Protection Agency (1999) National Recommended Water Quality Criteria-Correction, EPA-822-Z-99-001. Office of Water, Washington

    Google Scholar 

  24. 24.

    Arvidsson P, Plieva FM, Savina IN, Lozinsky VI, Fexby S, Bülow L, Galaev IY, Mattiasson B (2002) Chromatography of microbial cells using continuous supermacroporous affinity and ion-exchange columns. J Chromatogr A 977:27–38

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Kumar A, Plieva FM, Galaev IY, Mattiasson B (2003) Affinity fractionation of lymphocytes using a monolithic cryogel. J Immunol Methods 283:185–194

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Yao KJ, Yun JX, Shen SC, Wang LH, He XJ, Yu XM (2006) Characterization of a novel continuous supermacroporous monolithic cryogel embedded with nanoparticles for protein chromatography. J Chromatogr A 1109:103–110

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Mafu LD, Msagati TA, Mamba BB (2013) Ion-imprinted polymers for environmental monitoring of inorganic pollutants: synthesis, characterization, and applications. Environ Sci Pollut Res Int 20(2):790–802

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Yoshikawa M (2008) Surface plasmon resonance studies on molecularly imprinted films. J Polym Appl Sci 110:2826–2832

    Article  CAS  Google Scholar 

  29. 29.

    Haginaka J (2001) HPLC-based bioseparations using molecularly imprinted polymers. Bioseparation 10:337–351

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Ye L, Mosbach K (2001) Polymers recognizing biomolecules based on a combination of molecular imprinting and proximity scintillation: a new sensor concept. J Am Chem Soc 123:2901–2902

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Zhang L, Cheng G, Fu C (2003) Synthesis and characteristics of tyrosine imprinted beads via suspension polymerization. React Funct Polym 56:167–173

    Article  CAS  Google Scholar 

  32. 32.

    Nicholl IA, Rosengren JP (2001) Molecular imprinting of surfaces. Bioseparation 10:301–305

    Article  Google Scholar 

  33. 33.

    Cormak PAG, Mosbach K (1999) Molecular imprinting: recent developments and the road ahead. React Funct Polym 41:115–124

    Article  Google Scholar 

  34. 34.

    Kyritsis A, Pissis P, Grammatikakis J (1995) Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels. J Polym Sci Part B Polym Phys 33(12):1737–1750

    Article  CAS  Google Scholar 

  35. 35.

    Aziz SB, Abidin ZHZ, Arof AK (2010) Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosansilver triflate electrolyte membrane. Express Polym Lett. https://doi.org/10.3144/expresspolymlett.2010.38

    Article  Google Scholar 

  36. 36.

    Aziz SB (2017) Investigation of metallic silver nanoparticles through UV–Vis and optical micrograph techniques. Int J Electrochem Sci 10:363–373

    Article  CAS  Google Scholar 

  37. 37.

    Aziz SB, Abidin ZHZ, Arof AK (2010) Effect of silver nanoparticles on the DC conductivity in chitosan-silver triflate polymer electrolyte. Phys B Phys Condens Matter 405:4429–4433. https://doi.org/10.1016/j.physb.2010.08.008

    Article  CAS  Google Scholar 

  38. 38.

    Aziz SB, Abidin ZHZ (2014) Electrical and morphological analysis of chitosan: AgTf solid electrolyte. Mater Chem Phys 144:280–286. https://doi.org/10.1016/j.matchemphys.2013.12.029

    Article  CAS  Google Scholar 

  39. 39.

    Aziz SB, Abidin ZHZ, Kadir MFZ (2015) Innovative method to avoid the reduction of silver ions to silver nanoparticles (Ag+ → Ag°) in silver ion conducting based polymer electrolytes. Phys Scr 90:035808. https://doi.org/10.1088/0031-8949/90/3/035808

    Article  CAS  Google Scholar 

  40. 40.

    Aziz SB, Abdullah OG, Rasheed MA (2017) A novel polymer composite with a small optical band gap: new approaches for photonics and optoelectronics. J Appl Polym Sci 134:10. https://doi.org/10.1002/app.44847

    CAS  Article  Google Scholar 

  41. 41.

    Aziz S, Abdullah R, Rasheed M et al (2017) Role of ion dissociation on DC conductivity and silver nanoparticle formation in PVA: AgNt based polymer electrolytes: deep insights to ion transport mechanism. Polymers (Basel) 9:338. https://doi.org/10.3390/polym9080338

    Article  CAS  PubMed Central  Google Scholar 

  42. 42.

    Aziz SB, Rasheed MA, Abidin ZHZ (2017) Optical and electrical characteristics of silver ion conducting nanocomposite solid polymer electrolytes based on chitosan. J Electron Mater 46:6119–6130. https://doi.org/10.1007/s11664-017-5515-8

    Article  CAS  Google Scholar 

  43. 43.

    Aziz SB (2017) Morphological and optical characteristics of chitosan(1−x): Cu o x (4 ≤ x ≤ 12) based polymer nano-composites: optical dielectric loss as an alternative method for Tauc’s model. Nanomaterials 7:444. https://doi.org/10.3390/nano7120444

    Article  CAS  PubMed Central  Google Scholar 

  44. 44.

    Aziz S, Abdulwahid R, Rasheed M et al (2017) Polymer blending as a novel approach for tuning the SPR peaks of silver nanoparticles. Polymers (Basel) 9:486. https://doi.org/10.3390/polym9100486

    Article  CAS  Google Scholar 

  45. 45.

    Utku S, Yılmaz E, Türkmen D et al (2008) Ion-imprinted thermosensitive polymers for Fe3+ removal from human plasma. Hacettepe J Biol Chem 36:291–304

    Google Scholar 

  46. 46.

    Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM (2018) A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Mater Devices 3:1–17. https://doi.org/10.1016/J.JSAMD.2018.01.002

    Article  Google Scholar 

  47. 47.

    Aziz SB (2013) Li+ ion conduction mechanism in poly(ε-caprolactone)-based polymer electrolyte. Iran Polym J 22:877–883. https://doi.org/10.1007/s13726-013-0186-7

    Article  CAS  Google Scholar 

  48. 48.

    Aziz SB, Abdullah O, Hussein S et al (2017) Effect of PVA blending on structural and ion transport properties of CS: AgNt-based polymer electrolyte membrane. Polymers (Basel) 9:622. https://doi.org/10.3390/polym9110622

    Article  CAS  Google Scholar 

  49. 49.

    Aziz SB (2016) Erratum to: Occurrence of electrical percolation threshold and observation of phase transition in chitosan(1−x): AgIx (0.05 ≤ x ≤ 0.2)-based ion-conducting solid polymer composites. Appl Phys A 122:785. https://doi.org/10.1007/s00339-016-0272-8

    Article  CAS  Google Scholar 

  50. 50.

    Szu SP, Lin CY (2003) AC impedance studies of copper doped silica glass. Mater Chem Phys 282:295–300

    Article  CAS  Google Scholar 

  51. 51.

    Kwok HL, Siu WC (1979) Carrier concentration and mobility in chemically sprayed cadmium sulphide thin films. Thin Solid Films 61:249–257

    Article  CAS  Google Scholar 

  52. 52.

    Buchner R, Stauber J, Barthel J (1999) The dielectric relaxation of water between 0 °C and 35 °C. Chem Phys Lett 306:57–63

    Article  CAS  Google Scholar 

  53. 53.

    Angulo-Sherman A, Mercado-Uribe H (2014) Water under inner pressure: a dielectric spectroscopy study. Phys Rev E 89:022406(1–5)

    Article  CAS  Google Scholar 

  54. 54.

    Aziz SB, Abdullah RM (2018) Crystalline and amorphous phase identification from the tanδ relaxation peaks and impedance plots in polymer blend electrolytes based on [CS:AgNt]x:PEO(x−1) (10 ≤ x ≤ 50). Electrochim Acta 285:30–46. https://doi.org/10.1016/J.ELECTACTA.2018.07.233

    Article  CAS  Google Scholar 

  55. 55.

    Kaatze U (1989) Complex permittivity of water as a function of frequency and temperature. J Chem Eng Data 34:371–374

    Article  CAS  Google Scholar 

  56. 56.

    Prabakar K, Narayandass SK, Mangalaraj D (2003) Dielectric properties of Cd0.6Zn0.4Te thin films. Phys Status Solidi A 199:507–514

    Article  CAS  Google Scholar 

  57. 57.

    Abdel Kader MM, Elzayat MY, Hammad TR, Aboud AI, Abdelmonem H (2011) Dielectric permittivity, AC conductivity and phase transition in hydroxyl ammonium sulfate. Phys Scr 83:1–7

    Article  CAS  Google Scholar 

  58. 58.

    Satter AA, Samy AR (2003) Dielectric properties of rare earth substituted Cu–Zn ferrites. Phys Status Solidi(a) 200:415–422

    Article  CAS  Google Scholar 

  59. 59.

    Maurya D, Kumar J (2005) Dielectric-spectroscopic and a.c. conductivity studies on layered Na2-XKXTi3O7 (X = 0.2, 0.3, 0.4) ceramics. J Phys Chem Solids 66:1614–1620

    Article  CAS  Google Scholar 

  60. 60.

    Maity S, Bhattacharya D, Ray SK (2011) Structural and impedance spectroscopy of pseudo-co-ablated (SrBi2Ta2O9)(1−x)–(La0.67Sr0.33MnO3)x composites. J Phys D Appl Phys 44:1–10

    Article  CAS  Google Scholar 

  61. 61.

    Matheswaran P, Saravanakumar R, Velumani S (2010) AC and dielectric properties of vacuum evaporated InTe bilayer thin films. Mater Sci Eng B 174:269–272

    Article  CAS  Google Scholar 

  62. 62.

    Moynihan CT (1994) Analysis of electrical relaxation in glasses and melts with large concentrations of mobile ions. J Non-Cryst Solids 172–174:1395–1407

    Article  Google Scholar 

  63. 63.

    Moynihan CT, Boesch LP, Laberge NL (1973) Decay function for the electric field relaxation in vitreous ionic conductors. Phys Chem Glasses 14:122–125

    CAS  Google Scholar 

  64. 64.

    Sural M, Ghosh A (1998) Electrical conductivity and conductivity relaxation in glasses. J Phys Condens Matter 10:10577–10586

    Article  CAS  Google Scholar 

  65. 65.

    Sinclair DC, West AR (1989) Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J Appl Phys 66:3850–3856

    Article  CAS  Google Scholar 

  66. 66.

    Sinclair DC, West AR (1994) Effect of atmosphere on the PTCR properties of BaTiO3 ceramics. J Mater Sci 29:6061–6068

    Article  CAS  Google Scholar 

  67. 67.

    Aziz SB, Karim WO, Qadir K, Zafar Q (2018) Proton ion conducting solid polymer electrolytes based on chitosan incorporated with various amounts of barium titanate (BaTiO3). Int J Electrochem Sci 13:6112–6125. https://doi.org/10.20964/2018.06.38

    Article  CAS  Google Scholar 

  68. 68.

    Aziz SB (2018) The Mixed contribution of ionic and electronic carriers to conductivity in chitosan based solid electrolytes mediated by CuNt salt. J Inorg Organomet Polym Mater 28:1942–1952. https://doi.org/10.1007/s10904-018-0862-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Prof. Adil Denizli for his support with his facilities during experimental studies and experiences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Koray Şarkaya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 131 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Şarkaya, K., Demir, A. The comparative investigation on synthesis, characterizations of silver ion-imprinting and non-imprinting cryogels, their impedance spectroscopies and relaxation mechanisms. Polym. Bull. 76, 5701–5716 (2019). https://doi.org/10.1007/s00289-018-2657-7

Download citation

Keywords

  • Cryogel
  • N-Methacryloly-(l)-cysteine methyl ester
  • Ion-imprinting
  • Molecular imprinting
  • Polymers
  • Dielectric properties
  • Electrical modulus