Skip to main content
Log in

Subsurface mechanical properties and subsurface creep behaviour of modified nanoclay-based wood–plastic composites studied by nanoindentation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Wood–plastic composites (WPCs) were prepared by polypropylene, wood flour, maleic anhydride-grafted polypropylene and pristine (Na+ montmorillonite)/TMI-modified nanoclay using extruder followed by injection moulding technique. The surface mechanical properties of the nanoclay-based WPC were investigated by means of nanoindentation technique. The results show that the hardness, elastic modulus and creep resistant of the WPC dramatically enhanced with the incorporation of nanoclay. This enhancement was dependent on the nanoclay content as well as the dispersion of nanoclay in the polymer matrix. At 1 wt% nanoclay content, the hardness, elastic modulus and creep resistant of pristine nanoclay-reinforced WPC (WPC/MMT) improved by approximately 35%, 30% and 15%, respectively, compared to WPC without nanoclay. For the TMI-modified nanoclay-based WPC (WPC/MMT Cu), the improvements in these properties were about 1.2, 1.5 and 1.5 times higher than the WPC/MMT. Viscoelastic model was applied to examine the effect of nanoclay loadings on the creep performance of the WPC. Results exhibited that the model was in good agreement with the experimental data. Incorporation of nanoclay leads to an increase in elastic deformation, especially in WPC/MMT Cu, and induces a higher initial displacement at the early stage of creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos Part A Appl Sci Manuf 37(1):80–91

    Article  CAS  Google Scholar 

  2. Hosseinaei O, Wang S, Enayati AA, Rials TG (2012) Effects of hemicellulose extraction on properties of wood flour and wood–plastic composites. Compos Part A Appl Sci Manuf 43(4):686–694

    Article  CAS  Google Scholar 

  3. Bakraji EH, Salman N (2003) Properties of wood–plastic composites: effect of inorganic additives. Radiat Phys Chem 66:49–53

    Article  CAS  Google Scholar 

  4. Mwaikambo LY, Ansell MP (1999) The effect of chemical treatment on the properties of hemp, sisal, jute and kapok fibres for composite reinforcement. Die angewandte makromolekulare Chemie 272(1):108–116

    Article  CAS  Google Scholar 

  5. Ashori A, Sheshmani S, Farhani F (2013) Preparation and characterization of bagasse/HDPE composites using multi-walled carbon nanotubes. Carbohydr Polym 92(1):865–871

    Article  CAS  PubMed  Google Scholar 

  6. Faruk O, Matuana LM (2008) Nanoclay reinforced HDPE as a matrix for wood–plastic composites. Compos Sci Technol 68(9):2073–2077

    Article  CAS  Google Scholar 

  7. Najafi A, Kord B, Abdi A, Ranaee S (2012) The impact of the nature of nanoclay on physical and mechanical properties of polypropylene/reed flour nanocomposites. J Thermoplast Compos Mater 25(6):717–727

    Article  CAS  Google Scholar 

  8. Olphen HV (1977) An introduction to clay colloidal chemistry. Wiley, New York

    Google Scholar 

  9. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35

    Article  CAS  Google Scholar 

  10. Dutta AK, Penumadu D, Files B (2004) Nanoindentation testing for evaluating modulus and hardness of single-walled carbon nanotube–reinforced epoxy composites. J Mater Res 19(01):158–164

    Article  CAS  Google Scholar 

  11. Li X, Gao H, Scrivens WA, Fei D, Xu X, Sutton MA, Reynolds AP, Myrick ML (2004) Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites. Nanotechnology 15(11):1416

    Article  CAS  Google Scholar 

  12. Downing TD, Kumar R, Cross WM, Kjerengtroen L, Kellar JJ (2000) Determining the interphase thickness and properties in polymer matrix composites using phase imaging atomic force microscopy and nanoindentation. J Adhes Sci Technol 14(14):1801–1812

    Article  CAS  Google Scholar 

  13. Gao SL, Mader E (2002) Characterisation of interphase nanoscale property variations in glass fiber reinforced polypropylene and epoxy resin composites. Compos Part A 33:559–576

    Article  Google Scholar 

  14. VanLandingham MR, Villarrubia JS, Guthrie WF, Meyers GF (2001) Nanoindentation of polymers, an overview, advances in scanning probe microscopy of polymers. Macromol Symp 167:15–43

    Article  CAS  Google Scholar 

  15. Munz M, Sturm H, Schulz E, Hinrichsen G (1998) The scanning force microscope as a tool for the detection of local mechanical properties within the interphase of fiber reinforced polymers. Compos Part A 29A:1251–1259

    Article  CAS  Google Scholar 

  16. Nawani P, Gelfer MY, Hsiao BS, Frenekl A, Gilman JW, Khalid S (2007) Surface modification of nanoclays by catalytically active transition metal ions. Langmuir 23:9808–9815

    Article  CAS  PubMed  Google Scholar 

  17. American Society for Testing and Materials (ASTM) (2002) ASTM D618-99:2002 Annual book of ASTM standards. American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  18. ASTM D 792 (2004) Annual book of ASTM standards. 8.02. American Society for Testing and Materials, Conshohocken

    Google Scholar 

  19. International Organisation for Standarisation, ISO 14577-1.2 (2001), pp 1–27

  20. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  CAS  Google Scholar 

  21. Hakamy A, Shaikh FUA, Low IM (2014) Thermal and mechanical properties of hemp fabric-reinforced nanoclay–cement nanocomposites. J Mater Sci 49(4):1684–1694

    Article  CAS  Google Scholar 

  22. Yeh SK, Kim KJ, Gupta RK (2013) Synergistic effect of coupling agents on polypropylene-based wood–plastic composites. J Appl Polym Sci 127(2):1047–1053

    Article  CAS  Google Scholar 

  23. Shen L, Tjiu WC, Liu T (2005) Nanoindentation and morphological studies on injection-molded nylon-6 nanocomposites. Polymer 46:11969–11977

    Article  CAS  Google Scholar 

  24. Cahn RW (ed) (2005) Concise encyclopedia of materials characterization, 2nd edn. Elsevier, Oxford

    Google Scholar 

  25. Shen L, Phang IY, Chen L, Liu T, Zeng K (2004) Nanoindentation and morphological studies on nylon 66 nanocomposites. I. Effect of clay loading. Polymer 45(10):3341–3349

    Article  CAS  Google Scholar 

  26. Schadler LS (2003) Polymer‐based and polymer‐filled nanocomposites. Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, pp 77–153

    Google Scholar 

  27. Yang S, Zhang YW, Zeng K (2004) Analysis of nanoindentation creep for polymeric materials. J Appl Phys 95(7):3655–3666

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is thankful to University Malaysia Pahang for providing postgraduate scholarship and funding (GRS No. 1403133) to complete this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Manohar Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S.M., Yusoh, K.B. Subsurface mechanical properties and subsurface creep behaviour of modified nanoclay-based wood–plastic composites studied by nanoindentation. Polym. Bull. 76, 2179–2196 (2019). https://doi.org/10.1007/s00289-018-2497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2497-5

Keywords

Navigation