Skip to main content
Log in

Recent developments in bamboo fiber-based composites: a review

  • Review
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The dominant emerging materials from more than 30 years ago are plastics, ceramics, and composite materials. Composite materials have steady growth in the volume and number of its applications as it enviably penetrates existing markets while creating new ones. Contemporary composite materials are well established in today’s market of specialty and everyday products with its proven worth as weight-saving materials. There is a current challenge of cost-effectiveness and environmental friendliness, thus leading to the search for low-cost polymeric-reinforced composites using entirely biodegradable fibers. Bamboo fibers have provided some response in the production of materials that are recyclable, biodegradable, and sustainable. The natural fibers yield composites with high strength-to-weight ratios as a function of the best properties of each component. Researchers have found sustainable high-end quality industrial products that can be generated from raw materials like bamboo fibers. Due to its high strength-weight ratio, bamboo fibers are often used to replace natural glass fiber. Thus, the much attention has been given to its composites with different matrix materials. This article gives a review of recent developments of bamboo fiber-based reinforced composites, its processing methodology, and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. van Dam JEG, Elbersen HW, Daza Montaño CM (2018) Bamboo production for industrial utilization. In: Perennial grasses for bioenergy and bioproducts. Elsevier, pp 175–216

  2. Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19(3):256–271

    Article  CAS  Google Scholar 

  3. Chattopadhyay DP, Inamdar MS (2015) Studies on the synthesis and application of N, N, N-trimethyl chitosan chloride (TMCHT) on cotton fabric. J Nat Fibers 12(4):341–356

    Article  CAS  Google Scholar 

  4. Zakikhani P, Zahari R, Sultan MTH, Majid DL (2014) Extraction and preparation of bamboo fibre-reinforced composites. Mater Des 63:820–828

    Article  CAS  Google Scholar 

  5. Constable G, Llewellyn D, Walford SA, Clement JD (2015) Cotton breeding for fiber quality improvement. In: Industrial crops: breeding for bioenergy and bioproducts, pp 191–232

  6. Nasir M et al (2017) Natural fiber improvement by laccase; optimization, characterization and application in medium density fiberboard. J Nat Fibers 14(3):379–389

    Article  CAS  Google Scholar 

  7. Saw SK, Akhtar K, Yadav N, Singh AK (2014) Hybrid composites made from jute/coir fibers: water absorption, thickness swelling, density, morphology, and mechanical properties. J Nat Fibers 11(1):39–53

    Article  CAS  Google Scholar 

  8. Gupta MK, Srivastava RK (2016) Mechanical, thermal and water absorption properties of hybrid sisal/jute fiber reinforced polymer composite. Indian J Eng Mater Sci 23:231–238

    CAS  Google Scholar 

  9. Gupta MK, Srivastava RK (2016) Mechanical, thermal and water absorption properties of hybrid sisal/jute fiber reinforced polymer composite. Indian J Eng Mater Sci 23(4):231–238

    CAS  Google Scholar 

  10. Ranilla LG, Kwon YI, Apostolidis E, Shetty K (2010) Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour Technol 101(12):4676–4689

    Article  CAS  PubMed  Google Scholar 

  11. Yang X, Kim H, Yang L, Cheng C, Zhao Y (2014) Composite varistors based on epoxy resin/La0.8Sr0.2MnO3. J Compos Mater 48(6):677–681

    Article  CAS  Google Scholar 

  12. Matadi Boumbimba R et al (2014) Preparation and mechanical characterisation of laminate composites made of glass fibre/epoxy resin filled with tri bloc copolymers. Compos Struct 116(1):414–422

    Article  Google Scholar 

  13. Campilho RDS (2016) Introduction to natural fiber composites. Nat Fiber Compos 5:356

    Google Scholar 

  14. Wang G, Chen F (2016) Development of bamboo fiber-based composites. In: Advanced high strength natural fibre composites in construction, pp 235–255

  15. Roslan SAH, Rasid ZA, Hassan MZ (2015) The natural fiber composites based on bamboo fibers: a review. ARPN J Eng Appl Sci 10(15):6279–6288

    CAS  Google Scholar 

  16. Peng Z et al (2013) The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 45(4):456–461

    Article  CAS  PubMed  Google Scholar 

  17. Rajan KP, Veena NR, Maria HJ, Rajan R, Skrifvars M, Joseph K (2011) Extraction of bamboo microfibrils and development of biocomposites based on polyhydroxybutyrate and bamboo microfibrils. J Compos Mater 45(12):1325–1329

    Article  CAS  Google Scholar 

  18. Abdul Khalil HPS et al (2014) The use of bamboo fibres as reinforcements in composites. In: Biofiber reinforcements in composite materials, pp 488–524

  19. Bystriakova N, Kapos V, Stapleton C, Lysenko I (2003) Bamboo biodiversity. Unep-Wcmc/Inbar 1:1–72

    Google Scholar 

  20. Sharma B, Gatóo A, Bock M, Ramage M (2015) Engineered bamboo for structural applications. Constr Build Mater 81:66–73

    Article  Google Scholar 

  21. Akinlabi ET, Anane-Fenin K, Akwada DR (2017) Bamboo taxonomy and distribution across the globe. In: Bamboo, pp 1–37

  22. Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos Part A Appl Sci Manuf 40(4):469–475

    Article  CAS  Google Scholar 

  23. Palombini FL, Kindlein W, de Oliveira BF, de Araujo Mariath JE (2016) Bionics and design: 3D microstructural characterization and numerical analysis of bamboo based on X-ray microtomography. Mater Charact 120:357–368

    Article  CAS  Google Scholar 

  24. Latif SS, Nahar S, Hasan M (2015) Fabrication and electrical characterization of bamboo fiber-reinforced polypropylene composite. J Reinf Plast Compos 34(3):187–195

    Article  CAS  Google Scholar 

  25. Mounika M, Ramaniah K, Ratna Prasad AV, Rao KM, Hema Chandra Reddy K (2012) Thermal conductivity characterization of bamboo fiber reinforced polyester composite. J Mater Environ Sci 3(6):1109–1116

    CAS  Google Scholar 

  26. Takagi H, Fujii T (2013) Mechanical characterization of bamboo fiber-reinforced green composites. Key Eng Mater 577–578:81–84

    Article  CAS  Google Scholar 

  27. Singh TJ, Samanta S (2014) Characterization of natural fiber reinforced composites-bamboo and sisal: a review. IJRET Int J Res Eng Technol 03(07):187–195

    Google Scholar 

  28. Thakur VK, Kessler MR (eds) (2015) Green biorenewable biocomposites: from knowledge to industrial applications. CRC Press, Boca Raton, USA, p 323

  29. Liu D, Song J, Anderson DP, Chang PR, Hua Y (2012) Bamboo fiber and its reinforced composites: structure and properties. Cellulose 19(5):1449–1480

    Article  CAS  Google Scholar 

  30. Eberts W, Siniawski MT, Burdiak T, Polito N (2015) Mechanical characterization of bamboo and glass fiber biocomposite laminates. J Renew Mater 3(4):259–267

    Article  CAS  Google Scholar 

  31. Sanal I (2016) Bamboo fiber-reinforced composites

  32. Clark LG, Londono X, Ruiz-Sanchez E (2015) Bamboo taxonomy and habitat. In: Bamboo: the plant and its uses, pp 1–30

  33. Gohil PP, Patel K, Chaudhary V, Ramjiyani R (2016) Effect of bamboo hybridization and staking sequence on mechanical behavior of bamboo-glass hybrid composite

  34. Li Q, WenJi Y, YangLun Y (2012) Research on properties of reconstituted bamboo lumber made by thermo-treated bamboo bundle curtains. For Prod J 62(7/8):545–550

    Google Scholar 

  35. Rao KMM, Rao KM (2007) Extraction and tensile properties of natural fibers: vakka, date and bamboo. Compos Struct 77(3):288–295

    Article  Google Scholar 

  36. Akinlabi ET, Anane-Fenin K, Akwada DR (2017) Properties of bamboo. In: Bamboo, pp 87–147

  37. Hojo T, Zhilan XU, Yang Y, Hamada H (2014) Tensile properties of bamboo, jute and kenaf mat-reinforced composite. Energy Procedia 56(C):72–79

    Article  CAS  Google Scholar 

  38. W. J., R. D, Canavan S (2015) Understanding the risks of an emerging global market for cultivating bamboo: considerations for a more responsible dissemination of alien bamboos. In: 10th World bamboo congress

  39. Liu X et al (2016) Nomenclature for engineered bamboo. BioResources 11(1):1141–1161

    CAS  Google Scholar 

  40. Okubo K, Fujii T (2013) Improvement of interfacial adhesion in bamboo polymer composite enhanced with microfibrillated cellulose. In: Polymer composites, biocomposites, vol 3, pp 317–329

  41. International Network for Bamboo & Rattan (2014) Bamboo: a strategic resource for countries to reduce the effects of climate change. Policy Synth Rep, pp 1–28

  42. Suhaily SS, Khalil HPSA, Nadirah WOW, Jawaid M (2013) Bamboo based biocomposites material, design and applications. Mater Sci, p 549

  43. Bystriakova N, Kapos V, Lysenko I, Stapleton CMA (2003) Distribution and conservation status of forest bamboo biodiversity in the Asia-Pacific Region. Biodivers Conserv 12(9):1833–1841

    Article  Google Scholar 

  44. Pulavarty B, Sarangi A (2015) Salt tolerance screening of bamboo genotypes (bamboo sps.) using growth and organic osmolytes accumulation as effective indicators. In: World Bamboo Congr., vol 10, no 1, pp 1–16

  45. Gupta A, Kumar A (2008) Potential of bamboo in sustainable development. Asia Pacific Bus Rev IV(4):100–107

    Article  Google Scholar 

  46. Correal JF (2016) Bamboo design and construction. In: Nonconventional and vernacular construction materials, pp 393–431

  47. Kim H, Okubo K, Fujii T, Takemura K (2013) Influence of fiber extraction and surface modification on mechanical properties of green composites with bamboo fiber. J Adhes Sci Technol 27(12):1348–1358

    Article  CAS  Google Scholar 

  48. Kavitha S, Felix Kala T (2016) Study on structure and extraction of bamboo fiber. Asian J Sci Technol 7(2):2426–2428

    CAS  Google Scholar 

  49. Yueping W et al (2010) Structures of bamboo fiber for textiles. Text Res J 80(4):334–343

    Article  CAS  Google Scholar 

  50. Bar-Yosef O, Eren MI, Yuan J, Cohen DJ, Li Y (2012) Were bamboo tools made in prehistoric Southeast Asia? An experimental view from South China. Quat Int 269:9–21

    Article  Google Scholar 

  51. Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimizu H (1997) Fiber texture and mechanical graded structure of bamboo. Compos Part B Eng 28(1–2):13–20

    Article  Google Scholar 

  52. Walter L (2002) The anatomy of bamboo culms. Int Netw Bamboo Ratt, p 128

  53. Liese W (1992) The structure of bamboo. In: International symposium on industrial use of bamboo, pp 1–6

  54. Yu WK, Chung KF, Chan SL (2005) Axial buckling of bamboo columns in bamboo scaffolds. Eng Struct 27(1):61–73

    Article  Google Scholar 

  55. Xiao Y (2016) Engineered bamboo. In: Nonconventional and vernacular construction materials, pp 433–452

  56. Bai YY, Xiao LP, Shi ZJ, Sun RC (2013) Structural variation of bamboo lignin before and after ethanol organosolv pretreatment. Int J Mol Sci 14(11):21394–21413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Resistance C, Properties T, Bamboo OF, Fibers G, Epoxy R, Composites H (2011) Chemical resistace and tensile properties of bamboo and glass fibers reinforced epoxy hybrid composties. Int J Mater Biomater Appl 1(1):17–20

    Google Scholar 

  58. Abdul Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368

    Article  CAS  Google Scholar 

  59. Li D-L et al (2015) Effect of lignin on bamboo biomass self-bonding during hot-pressing: lignin structure and characterization. BioResources 10(4):6769–6782

    CAS  Google Scholar 

  60. Xie J, Hse CY, Shupe TF, Pan H, Hu T (2016) Extraction and characterization of holocellulose fibers by microwave-assisted selective liquefaction of bamboo. J Appl Polym Sci 133(18)

  61. Zhang Z, Xue Q, Huang K, Ma Q, Guo Y (2013) Study on dissociation of nano bamboo extractives. Extraction 4(97):7

    Google Scholar 

  62. Hunter IR (2003) Bamboo resources, uses and trade: the future? J Bamboo Rattan 2(4):319–326

    Article  Google Scholar 

  63. Biswas S, Ahsan Q, Cenna A, Hasan M, Hassan A (2013) Physical and mechanical properties of jute, bamboo and coir natural fiber. Fibers Polym 14(10):1762–1767

    Article  CAS  Google Scholar 

  64. Nayak L, Mishra SP (2016) Prospect of bamboo as a renewable textile fiber, historical overview, labeling, controversies and regulation. Fashion Textiles 3(1)

  65. Osorio L, Trujillo E, Van Vuure AW, Verpoest I (2011) Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites. J Reinf Plast Compos 30(5):396–408

    Article  CAS  Google Scholar 

  66. Sugesty S, Kardiansyah T, Hardiani H (2015) Bamboo as raw materials for dissolving pulp with environmental friendly technology for rayon fiber. Procedia Chem 17:194–199

    Article  CAS  Google Scholar 

  67. Pinho E, Henriques M, Oliveira R, Dias A, Soares G (2010) Development of biofunctional textiles by the application of resveratrol to cotton, bamboo, and silk. Fibers Polym 11(2):271–276

    Article  CAS  Google Scholar 

  68. Stelte W (2013) Steam explosion for biomass pre-treatment

  69. Yao J, Bastiaansen C, Peijs T (2014) High strength and high modulus electrospun nanofibers. Fibers 2(2):158–186

    Article  CAS  Google Scholar 

  70. Zou L, Jin H, Lu W-Y, Li X (2009) Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers. Mater Sci Eng C 29(4):1375–1379

    Article  CAS  Google Scholar 

  71. Jayaramudu J, Reddy GSM, Varaprasad K, Sadiku ER, Ray SS, Rajulu AV (2014) Mechanical properties of uniaxial natural fabric Grewia tilifolia reinforced epoxy based composites: effects of chemical treatment. Fibers Polym 15(7):1462–1468

    Article  CAS  Google Scholar 

  72. Kang JT, Kim SH (2011) Improvement in the mechanical properties of polylactide and bamboo fiber biocomposites by fiber surface modification. Macromol Res 19(8):789–796

    Article  CAS  Google Scholar 

  73. Zhou A, Huang D, Li H, Su Y (2012) Hybrid approach to determine the mechanical parameters of fibers and matrixes of bamboo. Constr Build Mater 35:191–196

    Article  Google Scholar 

  74. Kuromi Y et al (2012) Removal of bamboo fragments transorbitally penetrated into the cerebellum and temporal lobe 30 years after the injury. Neurol Surg 40(11):979–983

    Google Scholar 

  75. Yu H, Yu C (2007) Study on microbe retting of kenaf fiber. Enzyme Microb Technol 40(7):1806–1809

    Article  CAS  Google Scholar 

  76. Lin JS, Wang X, Lu G (2014) Crushing characteristics of fiber reinforced conical tubes with foam-filler. Compos Struct 116(1):18–28

    Article  Google Scholar 

  77. Yu Y, Huang X, Yu W (2014) A novel process to improve yield and mechanical performance of bamboo fiber reinforced composite via mechanical treatments. Compos Part B Eng 56:48–53

    Article  CAS  Google Scholar 

  78. da Correia VC, dos Santos V, Sain M, Santos SF, Leão AL, Savastano Junior H (2016) Grinding process for the production of nanofibrillated cellulose based on unbleached and bleached bamboo organosolv pulp. Cellulose 23(5):2971–2987

    Article  CAS  Google Scholar 

  79. Hamdi H, Zahouani H, Bergheau JM (2004) Residual stresses computation in a grinding process. J Mater Process Technol 147(3):277–285

    Article  CAS  Google Scholar 

  80. Erdumlu N, Ozipek B (2008) Investigation of regenerated bamboo fibre and yarn characteristics. Fibres Text East Eur 16(4):43–47

    CAS  Google Scholar 

  81. Eriksson M, Goossens H, Peijs T (2015) Influence of drying procedure on glass transition temperature of PMMA based nanocomposites. Nanocomposites 1(1):36–45

    Article  CAS  Google Scholar 

  82. Zakikhani P, Zahari R, Sultan MTH, Majid DL (2014) Bamboo fibre extraction and its reinforced polymer composite material. Int J Chem Biomol Metall Mater Sci Eng 8(4):271–274

    Google Scholar 

  83. Li MF, Sun SN, Xu F, Sun RC (2012) Microwave-assisted organic acid extraction of lignin from bamboo: structure and antioxidant activity investigation. Food Chem 134(3):1392–1398

    Article  CAS  PubMed  Google Scholar 

  84. Fu J, Yang X, Yu C (2008) Preliminary research on bamboo degumming with xylanase. Biocatal Biotransform 26(5):450–454

    Article  CAS  Google Scholar 

  85. Manalo AC, Wani E, Zukarnain NA, Karunasena W, Lau KT (2015) Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre-polyester composites. Compos Part B Eng 80:73–83

    Article  CAS  Google Scholar 

  86. Xie J, Lin YS, Shi XJ, Zhu XY, Su WK, Wang P (2013) Mechanochemical-assisted extraction of flavonoids from bamboo (Phyllostachys edulis) leaves. Ind Crops Prod 43(1):276–282

    Article  CAS  Google Scholar 

  87. Kaur V, Chattopadhyay DP, Kaur S (2013) Study on extraction of bamboo fibres from raw bamboo fibres bundles using different retting techniques. Textiles Ind Sci Technol (TLIST) [Online]. http://www.seipub.org/tlist/paperInfo.aspx?ID=5427

  88. Jonoobi M et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22(2):935–969

    Article  CAS  Google Scholar 

  89. Liu DG, Song JW, Anderson DP, Chang PR, Hua Y (2012) Bamboo fiber and its reinforced composites: structure and properties. Cellulose 19(5):1449–1480

    Article  CAS  Google Scholar 

  90. Amada S, Untao S (2001) Fracture properties of bamboo. Compos Part B Eng 32(5):451–459

    Article  Google Scholar 

  91. Castanet E et al (2016) Structure–property relationships of elementary bamboo fibers. Cellulose 23(6):3521–3534

    Article  CAS  Google Scholar 

  92. Okubo K, Fujii T, Yamamoto Y (2004) Development of bamboo-based polymer composites and their mechanical properties. Compos A Appl Sci Manuf 35(3):377–383

    Article  CAS  Google Scholar 

  93. Phong NT, Fujii T, Chuong B, Okubo K (2011) Study on how to effectively extract bamboo fibers from raw bamboo and wastewater treatment. J Mater Sci Res 1(1)

  94. Rohit K, Dixit S (2016) A review—future aspect of natural fiber reinforced composite. Polym Renew Resour 7(2):43–60

    Google Scholar 

  95. Al-mansob RA et al (2017) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 87(1):42

    Google Scholar 

  96. Hajiha H, Sain M, Mei LH (2014) Modification and characterization of hemp and sisal fibers. J Nat Fibers 11(2):144–168

    Article  CAS  Google Scholar 

  97. Chand N, Fahim M (2008) Tribology of natural fiber polymer composites

  98. Tonoli GHD, Mendes RF, Siqueira G, Bras J, Belgacem MN, Savastano H (2013) Isocyanate-treated cellulose pulp and its effect on the alkali resistance and performance of fiber cement composites. Holzforschung 67(8):853–861

    Article  CAS  Google Scholar 

  99. Kaushik VK, Kumar A, Kalia S (2013) Effect of mercerization and benzoyl peroxide treatment on morphology, thermal stability and crystallinity of sisal fibers. Int J Text Sci 1(6):101–105

    Article  Google Scholar 

  100. George M, Mussone PG, Alemaskin K, Chae M, Wolodko J, Bressler DC (2016) Enzymatically treated natural fibres as reinforcing agents for biocomposite material: mechanical, thermal, and moisture absorption characterization. J Mater Sci 51(5):2677–2686

    Article  CAS  Google Scholar 

  101. George M, Mussone PG, Bressler DC (2014) Surface and thermal characterization of natural fibres treated with enzymes. Ind Crops Prod 53:365–373

    Article  CAS  Google Scholar 

  102. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596

    Article  CAS  Google Scholar 

  103. Cromer BM, Coughlin EB, Lesser AJ (2015) Evaluation of a new processing method for improved nanocomposite dispersions. Nanocomposites 1(3):152–159

    Article  CAS  Google Scholar 

  104. Ghazy A, Bassuoni M, Maguire E, O’Loan M (2016) Properties of fiber-reinforced mortars incorporating nano-silica. Fibers 4(1):6

    Article  CAS  Google Scholar 

  105. Khan Z, Yousif BF, Islam M (2017) Fracture behaviour of bamboo fiber reinforced epoxy composites. Compos Part B Eng 116:186–199

    Article  CAS  Google Scholar 

  106. Wang YN, Weng YX, Wang L (2014) Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites. Polym Test 36:119–125

    Article  CAS  Google Scholar 

  107. Sharma B (2016) Development of engineered bamboo for structural design. In: Symposium: bamboo in the urban environment 2016

  108. Shibata S, Cao Y, Fukumoto I (2008) Flexural modulus of the unidirectional and random composites made from biodegradable resin and bamboo and kenaf fibres. Compos Part A Appl Sci Manuf 39(4):640–646

    Article  CAS  Google Scholar 

  109. May-Pat A, Valadez-González A, Herrera-Franco PJ (2013) Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites. Polym Test 32(6):1114–1122

    Article  CAS  Google Scholar 

  110. De Almeida AC et al (2017) Wood-bamboo particleboard: mechanical properties. BioResources 12(4):7784–7792

    Google Scholar 

  111. Trujillo D, López LF (2016) Bamboo material characterisation. In: Nonconventional and vernacular construction materials, pp 365–392

  112. Sharma B, Bauer H, Schickhofer G, Ramage M (2017) Mechanical characterisation of structural laminated bamboo. Proc Inst Civ Eng Struct Build 170(SB4):250–264

    Article  Google Scholar 

  113. Jain S, Kumar R, Jindal UC (1992) Mechanical behaviour of bamboo and bamboo composite. J Mater Sci 27(17):4598–4604

    Article  CAS  Google Scholar 

  114. Wang F, Shao J, Keer LM, Li L, Zhang J (2015) The effect of elementary fibre variability on bamboo fibre strength. Mater Des 75:136–142

    Article  Google Scholar 

  115. Gulrajani ML, Arora A (2006) Isolation and characterization of bamboo fibres. J Bamboo Ratt 5(3–4):177–186

    Google Scholar 

  116. Daniel IM, Ishai O (1994) Engineering mechanics of composite materials. Mech Compos Mater 881–886

  117. Vigneshwar M, Divagar S, Harisudhan PS, Mariselvam V, Selvamani ST (2015) Flexural test on glass, sisal, kenaf fiber composite material produced by hand layup method. Int J Appl Eng Res 10(84): Special Issue, pp. 140–142

  118. Palanikumar K, Ramesh M, Hemachandra Reddy K (2016) Experimental investigation on the mechanical properties of green hybrid sisal and glass fiber reinforced polymer composites. J Nat Fibers 13(3):321–331

    Article  CAS  Google Scholar 

  119. Fiore V, Di Bella G, Valenza A (2015) The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Compos Part B Eng 68:14–21

    Article  CAS  Google Scholar 

  120. Liang K, Shi S, Wang G (2014) Effect of impregnated inorganic nanoparticles on the properties of the kenaf bast fibers. Fibers 2(3):242–254

    Article  CAS  Google Scholar 

  121. Bajpai PK, Singh I, Madaan J (2012) Development and characterization of PLA-based green composites: a review. J Thermoplast Compos Mater 27(1):52–81

    Article  CAS  Google Scholar 

  122. Bajpai PK, Singh I, Madaan J (2014) Development and characterization of PLA-based green composites: a review. J Thermoplast Compos Mater 27(1):52–81

    Article  CAS  Google Scholar 

  123. Pracella M, Haque MM, Puglia D, Alvarez V (2012) Preparation and characterization of PLA nanocomposites with nanocellulose filled PVAC. In: 15th European conference on composite materials

  124. Montaño CMD, Pels JR, Fryda LE (2012) Evaluation of torrefied bamboo for sustainable bioenergy production evaluation of torrefied bamboo for sustainable bioenergy. In: 9th World Bamboo Congress, April, pp 10–15

  125. Peng P, She D (2014) Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: a review. Carbohyd Polym 112:701–720

    Article  CAS  Google Scholar 

  126. Abilash N, Sivapragash M (2016) Optimizing the delamination failure in bamboo fiber reinforced polyester composite. J King Saud Univ Eng Sci 28(1):92–102

    Google Scholar 

  127. Correal JF, Echeverry JS (2015) Evaluation of selected mechanical properties of new laminated guadua mats for structural use. In: 10th World bamboo congress

  128. Banga H, Singh VK, Choudhary SK (2015) Fabrication and study of mechanical properties of bamboo fibre reinforced bio-composites. Innov Syst Des Eng 6(1):84–99

    Google Scholar 

  129. R M, Bansal S, Raichurkar P (2016) Experimental study of bamboo using banana and linen fibre reinforced polymeric composites. Perspect Sci 8:313–316

  130. Cassano R, Trombino S (2012) Modification of cotton fiber for biomedical applications. In: Cotton: cultivation, varieties and uses, pp 165–182

  131. Xi LX, Qin DC (2012) The antibacterial performance of natural bamboo fiber and its influencing factors. In: Proceedings of the 55th international convention of society of wood science and technology August 27–31, 2012 Beijing, China, 2012, pp 1–8

Download references

Acknowledgements

Special thanks to the Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS) for supporting this research with Grant Number F02/SPGS/1443/2016/25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adamu Muhammad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, A., Rahman, M., Hamdan, S. et al. Recent developments in bamboo fiber-based composites: a review. Polym. Bull. 76, 2655–2682 (2019). https://doi.org/10.1007/s00289-018-2493-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2493-9

Keywords

Navigation