Skip to main content
Log in

Effect of boron acrylate monomer content and multi-acrylate functional boron methacrylate on adhesive performance for water-borne acrylic polymers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study the influence of boron acrylates as functional monomer on adhesive and cohesive performance of water-borne pressure-sensitive adhesives coated on bi-orientated polypropylene (BOPP) has been investigated. A series of pressure-sensitive adhesives with different monomer composition was prepared using emulsion polymerization. The monomers were butyl acrylate; methyl methacrylate; acrylic acid; boron acrylate; and multi-acrylate functional boron methacrylate. The adhesive performance was studied at 0, 1.3 and 3.9% of boron acrylate monomer content based on total monomer composition and 1% of multi-acrylate functional boron methacrylate. The adhesives obtained with constant thickness were coated onto a BOPP and evaluated for the performance by measuring the tackiness, peel strength and shear strength on several surfaces including stainless steel, glass, aluminum (Al) and low density polyethylene. Results showed that addition of boron acrylate was slightly increasing the adhesion and cohesion performance on non-polar surfaces. While it did not show any dramatic decrease in the adhesive performance for different surfaces, the decomposition temperature showed increase in TGA analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Czech Z, Pełech R (2009) The thermal degradation of acrylic pressure-sensitive adhesives based on butyl acrylate and acrylic acid. Prog Org Coat 65(1):84–87

    Article  CAS  Google Scholar 

  2. Demarteau W, Loutz JM (1996) Rheology of acrylic dispersions for pressure sensitive adhesives. Prog Org Coat 27(1):33–44

    Article  CAS  Google Scholar 

  3. Ewert TR, Mannion AM, Coughlin ML, Macosko CW, Bates FS (2018) Influence of rheology on renewable pressure-sensitive adhesives from a triblock copolymer. J Rheol 62(1):161–170

    Article  CAS  Google Scholar 

  4. Zahra S-N, Austin H, Ashley B, Christopher WR, Cochran EW (2018) Rheological and physical characterization of pressure sensitive adhesives from bio-derived block copolymers. J Appl Polym Sci 135(34):46618

    Article  CAS  Google Scholar 

  5. Ding K, John A, Shin J, Lee Y, Quinn T, Tolman WB et al (2015) High-performance pressure-sensitive adhesives from renewable triblock copolymers. Biomacromol 16(8):2537–2539

    Article  CAS  Google Scholar 

  6. Nasiri M, Reineke TM (2016) Sustainable glucose-based block copolymers exhibit elastomeric and adhesive behavior. Polym Chem 7(33):5233–5240

    Article  CAS  Google Scholar 

  7. Gallagher JJ, Hillmyer MA, Reineke TM (2016) Acrylic triblock copolymers incorporating isosorbide for pressure sensitive adhesives. ACS Sustain Chem Eng 4(6):3379–3387

    Article  CAS  Google Scholar 

  8. Nasiri M, Saxon DJ, Reineke TM (2018) Enhanced mechanical and adhesion properties in sustainable triblock copolymers via non-covalent interactions. Macromolecules 51(7):2456–2465

    Article  CAS  Google Scholar 

  9. Lee S, Yuk JS, Park H, Kim Y-W, Shin J (2017) Multiblock thermoplastic elastomers derived from biodiesel, poly(propylene glycol), and l-Lactide. ACS Sustain Chem Eng 5(9):8148–8160

    Article  CAS  Google Scholar 

  10. Bakhshi H, Zohuriaan-Mehr MJ, Bouhendi H, Kabiri K (2009) Spectral and chemical determination of copolymer composition of poly (butyl acrylate-co-glycidyl methacrylate) from emulsion polymerization. Polym Test 28(7):730–736

    Article  CAS  Google Scholar 

  11. Reddy KR, Lee K-P, Gopalan AI (2007) Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J Nanosci Nanotechnol 7(9):3117–3125

    Article  CAS  PubMed  Google Scholar 

  12. Sue-eng S, Boonchuwong T, Chaiyasat P, Okubo M, Chaiyasat A (2017) Preparation of stable poly(methacrylic acid)-b-polystyrene emulsion by emulsifier-free emulsion iodine transfer polymerization (emulsion ITP) with self-assembly nucleation. Polymer 110:124–130

    Article  CAS  Google Scholar 

  13. Khan MU, Reddy KR, Snguanwongchai T, Haque E, Gomes VG (2016) Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym Sci 294(10):1599–1610

    Article  CAS  Google Scholar 

  14. Hassan M, Reddy KR, Haque E, Minett AI, Gomes VG (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interface Sci 410:43–51

    Article  CAS  PubMed  Google Scholar 

  15. Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A 489:1–16

    Article  CAS  Google Scholar 

  16. Hassan M, Reddy KR, Haque E, Faisal SN, Ghasemi S, Minett AI et al (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8

    Article  CAS  Google Scholar 

  17. Reddy KR, Lee K-P, Gopalan AI, Kang H-D (2007) Organosilane modified magnetite nanoparticles/poly(aniline-co-o/m-aminobenzenesulfonic acid) composites: synthesis and characterization. React Funct Polym 67(10):943–954

    Article  CAS  Google Scholar 

  18. Reddy KR, Sin BC, Yoo CH, Sohn D, Lee Y (2009) Coating of multiwalled carbon nanotubes with polymer nanospheres through microemulsion polymerization. J Colloid Interface Sci 340(2):160–165

    Article  CAS  PubMed  Google Scholar 

  19. Priyadarshi A, Shimin L, Mhaisalkar SG, Rajoo R, Wong EH, Kripesh V et al (2005) Characterization of optical properties of acrylate based adhesives exposed to different temperature conditions. J Appl Polym Sci 98(3):950–956

    Article  CAS  Google Scholar 

  20. Carmen P, Salvador EF, Teresa C, Paula B, Fernando C (2004) Fluorescent probes for monitoring the pulsed-laser-induced photocuring of poly(urethane acrylate)-based adhesives. J Polym Sci Part A Polym Chem 42(5):1227–1238

    Article  CAS  Google Scholar 

  21. Tiemblo P, Guzmán J, Riande E, Fernández A, Bosch P (2002) Gas transport properties in chlorosulfonated polyethylene-acrylate based adhesives. Polym Eng Sci 42(6):1131–1140

    Article  CAS  Google Scholar 

  22. Ziaud D, Chen L, Ullah I, Wang PK, Javaid AB, Hu C et al (2018) Synthesis and characterization of starch-g-poly(vinyl acetate-co-butyl acrylate) bio-based adhesive for wood application. Int J Biol Macromol 114:1186–1193

    Article  CAS  Google Scholar 

  23. Hongping X, Nongyue W, Taoguang Q, Jianguang Y, Yanmei Y, Xiongwei Q et al (2012) Effect of the MMA content on the emulsion polymerization process and adhesive properties of poly(BA-co-MMA-co-AA) latexes. J Appl Polym Sci 123(2):1068–1078

    Article  CAS  Google Scholar 

  24. Qie L, Dubé MA (2010) The influence of butyl acrylate/methyl methacrylate/2-hydroxy ethyl methacrylate/acrylic acid latex properties on pressure sensitive adhesive performance. Int J Adhes Adhes 30(7):654–664

    Article  CAS  Google Scholar 

  25. Sun S, Li M, Liu A (2013) A review on mechanical properties of pressure sensitive adhesives. Int J Adhes Adhes 41:98–106

    Article  CAS  Google Scholar 

  26. Dhal PK, Deshpande A, Babu GN (1982) Pressure sensitive adhesives of acrylic polymers containing functional monomers. Polymer 23(6):937–939

    Article  CAS  Google Scholar 

  27. Introduction to adhesion and adhesives. In: Comyn J (ed) Adhesion Science: The Royal Society of Chemistry 1997. p 1–17

  28. Akarsu Dülgar C, Serhatlı İE (2018) Synthesis of poly(BA-co-MMA) dispersions having AA/MAA/AAm/MAAm comonomers and the comparison of their effect on adhesive performance. Polym Bull 75(2):877–890

    Article  CAS  Google Scholar 

  29. Renata J, Keltoum O, McKenna TF, Dubé MA (2004) Butyl acrylate/methyl methacrylate latexes: adhesive properties. Macromol Symp 206(1):43–56

    Article  CAS  Google Scholar 

  30. Ismail H, Zhmad Z, Yew FW (2011) Effect of monomer composition on adhesive performance for waterborne acrylic pressure-sensitive adhesives. J Phys Sci 22(2):51–63

    CAS  Google Scholar 

  31. Gowmer MD, Shanks RA (2004) The effect of varied monomer composition on adhesive performance and peeling master curves for acrylic pressure-sensitive adhesives. J Appl Polym Sci 93(6):2909–2917

    Article  CAS  Google Scholar 

  32. Roberge S, Dubé MA (2006) The effect of particle size and composition on the performance of styrene/butyl acrylate miniemulsion-based PSAs. Polymer 47(3):799–807

    Article  CAS  Google Scholar 

  33. Kajtna J, Golob J, Krajnc M (2009) The effect of polymer molecular weight and crosslinking reactions on the adhesion properties of microsphere water-based acrylic pressure-sensitive adhesives. Int J Adhes Adhes 29(2):186–194

    Article  CAS  Google Scholar 

  34. Czech Z (2007) Synthesis and cross-linking of acrylic PSA systems. J Adhes Sci Technol 21(7):625–635

    Article  CAS  Google Scholar 

  35. Czech Z (2003) Crosslinking of pressure sensitive adhesive based on water-borne acrylate. Polym Int 52(3):347–357

    Article  CAS  Google Scholar 

  36. Acton QA (2013) Boron compounds—advances in research and application: 2013 Edn, ScholarlyEditions

  37. Ekrem M, Şahin ÖS, Karabulut SE, Avcı A (2018) Thermal stability and adhesive strength of boron nitride nano platelets and carbon nano tube modified adhesives. J Compos Mater 52(11):1557–1565

    Article  CAS  Google Scholar 

  38. Yalinkilic MK, Imamura Y, Takahashi M, Demirci Z (1998) Effect of boron addition to adhesive and/or surface coating on fire-retardant properties of particleboard. Wood Fiber Sci 30(4):348–359

    CAS  Google Scholar 

  39. Çanak TÇ, Kaya K, Serhatlı IE (2014) Boron containing UV-curable epoxy acrylate coatings. Prog Org Coat 77(11):1911–1918

    Article  CAS  Google Scholar 

  40. FINAT (2009) FINAT Technical Handbook: Test Methods: Finat

  41. Diethert A, Ecker K, Peykova Y, Willenbacher N, Müller-Buschbaum P (2011) Tailoring the near-surface composition profiles of pressure-sensitive adhesive films and the resulting mechanical properties. ACS Appl Mater Interfaces 3(6):2012–2021

    Article  CAS  PubMed  Google Scholar 

  42. Kowalski A, Czech Z, Byczyński Ł (2013) How does the surface free energy influence the tack of acrylic pressure-sensitive adhesives (PSAs). J Coat Technol Res 10(6):879–885

    Article  CAS  Google Scholar 

  43. Peykova Y, Lebedeva OV, Diethert A, Müller-Buschbaum P, Willenbacher N (2012) Adhesive properties of acrylate copolymers: effect of the nature of the substrate and copolymer functionality. Int J Adhes Adhes 34:107–116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Istanbul Technical University Research Fund and Organik Kimya San. ve Tic. A.Ş. for their technical and financial support (ITU-AYP-2014-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İ. Ersin Serhatlı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akarsu Dulgar, C., Çakır Çanak, T. & Serhatlı, İ.E. Effect of boron acrylate monomer content and multi-acrylate functional boron methacrylate on adhesive performance for water-borne acrylic polymers. Polym. Bull. 76, 2499–2517 (2019). https://doi.org/10.1007/s00289-018-2490-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2490-z

Keywords

Navigation