Polymer Bulletin

, Volume 76, Issue 5, pp 2233–2252 | Cite as

Preparation and characterization of nanocomposites based on different zeolite frameworks as carriers for anticancer drug: zeolite Y versus ZSM-5

  • M. Karimi
  • M. Habibizadeh
  • K. RostamizadehEmail author
  • M. Khatamian
  • B. Divband
Original Paper


This research was to investigate and characterize different types of zeolites, i.e., Y and ZSM-5 as well as their corresponding nanocomposite of PEG (PEG/Y and PEG/ZSM-5), as carrier for loading and release of curcumin. Zeolites and PEG/zeolite nanocomposites were characterized by XRD, SEM and FT-IR techniques. Curcumin encapsulation efficiency of zeolite Y, ZSM-5, PEG/Y and PEG/ZSM-5 was determined to be 61.06, 40.45, 45.59 and 37.76%, respectively. Nitrogen adsorption–desorption measurement was used to measure the surface area and the pore volume of the hosts before and after curcumin loading. The decrease in surface areas and pore volumes after drug loading was attributed to the inclusion of curcumin in the zeolites pores. In vitro drug release of curcumin was studied in buffer solution (pH = 5.4 and 7.4) at 37 °C. The results showed higher levels of curcumin release from zeolite Y compared to ZSM-5. The zeolite nanocomposites also revealed the higher level of released curcumin in comparison with the corresponding zeolites. The amount of curcumin released at pH = 5.4 was higher than at pH = 7.4, which can be used as evidence to demonstrate the pH sensitivity of the zeolite as drug carrier. From the results, it can be concluded that zeolite-based drug delivery systems can be considered as promising candidate for delivery of hydrophobic drugs such as curcumin.


Zeolite Y ZSM-5 zeolite Nanocomposite Drug delivery 



We are most grateful for the continuing financial support of this research project by Zanjan University of Medical Sciences and University of Tabriz.


  1. 1.
    Ji SH, Cho JH, Jeong YH, Do Yun J, Yun JS (2017) The synthesis of flexible zeolite nanofibers by a polymer surface thermal etching process. Appl Surf Sci 416:178–182CrossRefGoogle Scholar
  2. 2.
    Wang L, Yang H, Pan G, Miao L, Chen S, Song Y (2017) Polyaniline–carbon nanotubes@ zeolite imidazolate framework67-carbon cloth hierarchical nanostructures for supercapacitor electrode. Electrochim Acta 240:16–23CrossRefGoogle Scholar
  3. 3.
    Benyakhou S, Belmokhtar A, Zehhaf A, Benyoucef A (2017) Development of novel hybrid materials based on poly (2-aminophenyl disulfide)/silica gel: preparation, characterization and electrochemical studies. J Mol Struct 1150:580–585CrossRefGoogle Scholar
  4. 4.
    Benykhlef S, Bekhoukh A, Berenguer R, Benyoucef A, Morallon E (2016) PANI-derived polymer/Al2O3 nanocomposites: synthesis, characterization, and electrochemical studies. Colloid Polym Sci 294(12):1877–1885CrossRefGoogle Scholar
  5. 5.
    Chouli F, Radja I, Morallon E, Benyoucef A (2017) A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium (IV) oxide nanoparticles: synthesis, characterization, and electrochemical properties. Polym Compos 38:E254–E260CrossRefGoogle Scholar
  6. 6.
    Barbe C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M et al (2004) Silica particles: a novel drug-delivery system. Adv Mater 16(21):1959–1966CrossRefGoogle Scholar
  7. 7.
    Costa R, Ribeiro C, Lopes A, Martins P, Sencadas V, Soares R et al (2013) Osteoblast, fibroblast and in vivo biological response to poly (vinylidene fluoride) based composite materials. J Mater Sci Mater Med 24(2):395–403CrossRefGoogle Scholar
  8. 8.
    Petushkov A, Ndiege N, Salem AK, Larsen SC (2010) Toxicity of silica nanomaterials: zeolites, mesoporous silica, and amorphous silica nanoparticles. Adv Mol Toxicol 4:223–266CrossRefGoogle Scholar
  9. 9.
    Khodaverdi E, Honarmandi R, Alibolandi M, Baygi RR, Hadizadeh F, Zohuri G (2014) Evaluation of synthetic zeolites as oral delivery vehicle for anti-inflammatory drugs. Iran J Basic Med Sci 17(5):337–343Google Scholar
  10. 10.
    Dyer A, Morgan S, Wells P, Williams C (2000) The use of zeolites as slow release anthelmintic carriers. J Helminthol 74(2):137–141 PubMed PMID: 10881284 CrossRefGoogle Scholar
  11. 11.
    Khodaverdi E, Soleimani HA, Mohammadpour F, Hadizadeh F (2016) Synthetic zeolites as controlled-release delivery systems for anti-inflammatory drugs. Chem Biol Drug Des 87(6):849–857 PubMed PMID: 26705687 CrossRefGoogle Scholar
  12. 12.
    Amorim R, Vilaça N, Martinho O, Reis RM, Sardo M, Rocha J et al (2012) Zeolite structures loading with an anticancer compound as drug delivery systems. J Phys Chem C 116(48):25642–25650CrossRefGoogle Scholar
  13. 13.
    Horcajada P, Rámila A, Pérez-Pariente J, Vallet Regi M (2004) Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater 68(1):105–109CrossRefGoogle Scholar
  14. 14.
    Serri C, de Gennaro B, Quagliariello V, Iaffaioli RV, De Rosa G, Catalanotti L et al (2017) Surface modified zeolite-based granulates for the sustained release of diclofenac sodium. Eur J Pharm Sci 99:202–208CrossRefGoogle Scholar
  15. 15.
    Salim MM, Malek NANN (2016) Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite. Mater Sci Eng C 59:70–77CrossRefGoogle Scholar
  16. 16.
    Serri C, de Gennaro B, Quagliariello V, Iaffaioli RV, De Rosa G, Catalanotti L et al (2017) Surface modified zeolite-based granulates for the sustained release of diclofenac sodium. Eur J Pharm Sci 01(99):202–208 PubMed PMID: 28012939 CrossRefGoogle Scholar
  17. 17.
    Zhang H, Kim Y, Dutta PK (2006) Controlled release of paraquat from surface-modified zeolite Y. Microporous Mesoporous Mater 88(1):312–318CrossRefGoogle Scholar
  18. 18.
    Hussein MA, Abu-Zied BM, Asiri AM (2014) Preparation, characterization, and electrical properties of ZSM-5/PEG composite particles. Polym Compos 35(6):1160–1168Google Scholar
  19. 19.
    Zou Y, Lu Y, Wei D (2004) Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J Agric Food Chem 52(16):5032–5039CrossRefGoogle Scholar
  20. 20.
    Abu-Zied BM, Schwieger W, Unger A (2008) Nitrous oxide decomposition over transition metal exchanged ZSM-5 zeolites prepared by the solid-state ion-exchange method. Appl Catal B 84(1):277–288CrossRefGoogle Scholar
  21. 21.
    Feng L, Zhao W, Zheng J, Frisco S, Song P, Li X (2011) The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA-15 and MCM-41). Sol Energy Mater Sol Cells 95(12):3550–3556CrossRefGoogle Scholar
  22. 22.
    Feng L, Zheng J, Yang H, Guo Y, Li W, Li X (2011) Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials. Sol Energy Mater Sol Cells 95(2):644–650CrossRefGoogle Scholar
  23. 23.
    Li H, Fang GY (2010) Experimental investigation on the characteristics of polyethylene glycol/cement composites as thermal energy storage materials. Chem Eng Technol 33(10):1650–1654CrossRefGoogle Scholar
  24. 24.
    Zhang L, Zhu J, Zhou W, Wang J, Wang Y (2011) Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method. Thermochim Acta 524(1):128–134CrossRefGoogle Scholar
  25. 25.
    Zhang L, Zhu J, Zhou W, Wang J, Wang Y (2012) Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials. Energy 39(1):294–302CrossRefGoogle Scholar
  26. 26.
    Salman N, Rüscher C, Buhl J-C, Lutz W, Toufar H, Stöcker M (2006) Effect of temperature and time in the hydrothermal treatment of HY zeolite. Microporous Mesoporous Mater 90(1):339–346CrossRefGoogle Scholar
  27. 27.
    Anitha A, Deepagan V, Rani VD, Menon D, Nair S, Jayakumar R (2011) Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydr Polym 84(3):1158–1164CrossRefGoogle Scholar
  28. 28.
    Morales-Pacheco P, Domínguez J, Bucio L, Alvarez F, Sedran U, Falco M (2011) Synthesis of FAU (Y)-and MFI (ZSM5)-nanosized crystallites for catalytic cracking of 1, 3, 5-triisopropylbenzene. Catal Today 166(1):25–38CrossRefGoogle Scholar
  29. 29.
    Cejka J, Van Bekkum H, Corma A, Schueth F (2007) Introduction to zeolite molecular sieves. Elsevier, AmsterdamGoogle Scholar
  30. 30.
    Cheng Y, Wang L-J, Li J-S, Yang Y-C, Sun X-Y (2005) Preparation and characterization of nanosized ZSM-5 zeolites in the absence of organic template. Mater Lett 59(27):3427–3430CrossRefGoogle Scholar
  31. 31.
    Wang W, Yang X, Fang Y, Ding J (2009) Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid–liquid phase change materials. Appl Energy 86(2):170–174CrossRefGoogle Scholar
  32. 32.
    Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y et al (2012) Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS ONE 7(3):e32616CrossRefGoogle Scholar
  33. 33.
    Rimoli MG, Rabaioli MR, Melisi D, Curcio A, Mondello S, Mirabelli R et al (2008) Synthetic zeolites as a new tool for drug delivery. J Biomed Mater Res Part A 87(1):156–164CrossRefGoogle Scholar
  34. 34.
    Fatouros DG, Douroumis D, Nikolakis V, Ntais S, Moschovi AM, Trivedi V et al (2011) In vitro and in silico investigations of drug delivery via zeolite BEA. J Mater Chem 21(21):7789–7794CrossRefGoogle Scholar
  35. 35.
    Ren H, Zhang L, An J, Wang T, Li L, Si X et al (2014) Polyacrylic acid@ zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release. Chem Commun 50(8):1000–1002CrossRefGoogle Scholar
  36. 36.
    Ainurofiq A, Choiri S (2015) Drug release mechanism of slightly soluble drug from nanocomposite matrix formulated with zeolite/hydrotalcite as drug carrier. Trop J Pharm Res 14(7):1129–1135CrossRefGoogle Scholar
  37. 37.
    Khalkhali M, Sadighian S, Rostamizadeh K, Khoeini F, Naghibi M, Bayat N et al (2015) Synthesis and characterization of dextran coated magnetite nanoparticles for diagnostics and therapy. BioImpacts BI 5(3):141CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran
  2. 2.Department of Pharmaceutical Biomaterials, School of PharmacyZanjan University of Medical SciencesZanjanIran
  3. 3.Student Research CommitteeZanjan University of Medical SciencesZanjanIran
  4. 4.Zanjan Pharmaceutical Nanotechnology Research Center, School of PharmacyZanjan University of Medical SciencesZanjanIran
  5. 5.Dental and Periodontal Research CenterTabriz University of Medical SciencesTabrizIran
  6. 6.Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran

Personalised recommendations