Skip to main content
Log in

Influences of octamethylenedicarboxylic dibenzoylhydrazide on crystallization, melting behaviors, and properties of isotactic polypropylene

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, octamethylenedicarboxylic dibenzoylhydrazide (TMC-300) was used as a highly efficient α-phase nucleating agent for isotactic polypropylene (iPP) for the first time. The influences of TMC-300 on crystallization and melting behaviors as well as mechanical and thermal properties of iPP were analyzed by differential scanning calorimeter, polarizing optical microscope, wide-angle X-ray diffractometer, and universal mechanical tests. The results reflected that TMC-300 had excellent nucleation effect and that 0.20 wt% was the optimal addition concentration for iPP. Compared to those of neat iPP, the crystallization temperature, the bending modulus, and the heat distortion temperature of nucleated iPP was increased by 7.10 °C, 14.3% and 18.30 °C, respectively, at 0.2 wt% addition amount of TMC-300. In addition, the spherulite size of iPP after addition of TMC-300 was also reduced obviously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vasile C, Seymour RB (eds) (2000) Handbook of polyolefins, 2nd Revised edn. Marcel Dekker, Inc., New York

    Google Scholar 

  2. Lv ZP, Yang YF, Wu R, Tong Y (2012) Design and properties of a novel nucleating agent for isotactic polypropylene. Mater Des 37:73–78

    Article  CAS  Google Scholar 

  3. Li JX, Cheung WL, Jia DM (1999) A Study on the heat of fusion of β-polypropylene. Polymer 40:1219–1222

    Article  CAS  Google Scholar 

  4. Varga J (1992) Supermolecular structure of isotactic polypropylene. J Mater Sci 27:2557–2579

    Article  CAS  Google Scholar 

  5. He ZR, Li DW, Hensley DK, Rondinone AJ, Chen JH (2013) Switching phase separation mode by varying the hydrophobicity of polymer additives in solution-processed semiconducting small-molecule/polymer blends. Appl Phys Lett 103:167–171

    Google Scholar 

  6. Zhao SC, Yu X, Gong HZ (2015) The crystallization behavior of isotactic polypropylene induced by a novel antinucleating agent and its inhibition mechanism of nucleatione. Ind Eng Chem Res 54:7650–7657

    Article  CAS  Google Scholar 

  7. Nie M, Han R, Wang Q (2014) Formation and alignment of hybrid shish-kebab morphology with rich beta crystals in an isotactic polypropylene pipe. Ind Eng Chem Res 53:4142–4146

    Article  CAS  Google Scholar 

  8. Zhang YF, Hou HH, Guo LH (2018) Effects of cyclic carboxylate nucleating agents on nucleus density and crystallization behavior of isotactic polypropylene. J Therm Anal Calorim 131:1483–1490

    Article  CAS  Google Scholar 

  9. Lotz B, Wittmann JC, Lovinger AJ (1996) Structure and morphology of poly(propylenes): a molecular analysis. Polymer 37:4979–4992

    Article  CAS  Google Scholar 

  10. Lotz B (2014) A new ε crystal modification found in stereodefective isotactic polypropylene Samples. Macromolecules 47:7612–7624

    Article  CAS  Google Scholar 

  11. Quan Y, Li H, Yan S (2014) Comparison study on the heterogeneous nucleation of isotactic polypropylene by its own fiber and α nucleating agents. Ind Eng Chem Res 53:4772–4778

    Google Scholar 

  12. Libster D, Aserin A, Garti N (2007) Advanced nucleating agents for polypropylene. Polym Adv Technol 18:685–695

    Article  CAS  Google Scholar 

  13. Rungswang W, Thongsak K, Prasansuklarb A (2014) Effects of sodium salt and sorbitol-derivative nucleating agents on physical properties related to crystal structure and orientation of polypropylene. Ind Eng Chem Res 53:2331–2339

    Article  CAS  Google Scholar 

  14. Zhang YF, Zhou PZ, Jiang YZ, Yang X (2017) The relationship between side chain isomerism of aliphatic C4 substituted 1,3,5-benzenetricarboxylamides and nucleation effects in isotactic polypropylene. Thermochim Acta 655:219–225

    Article  CAS  Google Scholar 

  15. Timme A, Kress R, Albuquerque RQ, Schmidt HW (2012) Phase behavior and mesophase structures of 1,3,5-benzene-and 1,3,5-cyclohexanetricarboxamides: towards an understanding of the losing order at the transition into the isotropic phase. Chem Eur J 18:8329–8339

    Article  CAS  PubMed  Google Scholar 

  16. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mat Sci Eng R: Rep 53:73–197

    Article  CAS  Google Scholar 

  17. Zhang YF, He B, Hou HH, Guo LH (2017) LH Isothermal crystallization of isotactic polypropylene nucleated with a novel aromatic heterocyclic phosphate nucleating agent. J Macromol Sci Part B Phys 56:811–820

    Article  CAS  Google Scholar 

  18. Gui QD, Xin Z, Zhu WP, Dai GC (2003) Effects of an organic phosphorus nucleating agent on crystallization behaviors and mechanical properties of polypropylene. J Appl Polym Sci 88:297–301

    Article  CAS  Google Scholar 

  19. Mes T, Smulders MM, Palmans ARA, Meijer EW (2010) Hydrogen-bond engineering in supramolecular polymers: polarity influence on the self-assembly of benzene-1,3,5-tricarboxamides. Macromolecules 43:1981–1991

    Article  CAS  Google Scholar 

  20. Marco C, Ellis G, Gomez MA, Arribas JM (2002) Comparative study of the nucleation activity of third generation sorbitol-based nucleating agents for isotactic polypropylene. J Appl Polym Sci 84:2440–2450

    Article  CAS  Google Scholar 

  21. Marco C, Ellis G, Gomez MA, Arribas JM (2003) Analysis of the isothermal crystallization of isotactic polypropylene nucleated with sorbitol derivatives. J Appl Polym Sci 88:2261–2274

    Article  CAS  Google Scholar 

  22. Kristiansen M, Werner M, Tervoort T, Smith P, Blomenhofer M, Schmidt HW (2003) The binary system isotactic polypropylene/bis(3,4-dimethylbenzylidene)sorbitol: phase behavior, nucleation, and optical properties. Macromolecules 36:5150–5156

    Article  CAS  Google Scholar 

  23. Ma Z, Fernandez-Ballester L, Cavallo D, Gough T, Peters GW (2013) High-stress shear-induced crystallization in isotactic polypropylene and propylene/ethylene random copolymers. Macromolecules 46:2671–2680

    Article  CAS  Google Scholar 

  24. Zhang YF, Zhou PZ, Guo LH, Hou HH (2017) The relationship between crystal structure and nucleation effect of 1,3,5-benzenetricarboxylic acid tris(phenylamide) in isotactic polypropylene. Colloid Polym Sci 295:619–626

    Article  CAS  Google Scholar 

  25. Zuiderduin WCJ, Westzaan C, Huétink J, Gaymans RJ (2003) Toughening of polypropylene with calcium carbonate particles. Polymer 44:261–275

    Article  CAS  Google Scholar 

  26. Nampoothiri KM, Nair NR, John RP (2010) An over view of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Article  CAS  Google Scholar 

  27. Pan P, Zhu B, Kai W, Dong T, Inoue Y (2008) Polymorphic transition in disordered poly (L-lactide) crystals induced by annealing at elevated temperatures. Macromolecules 41:4296–4304

    Article  CAS  Google Scholar 

  28. Rathi S, Kalish JP, Coughlin EB, Hsu SL (2011) Utilization of oligo (lactic acid) for studies of chain conformation and chain packing in poly (lactic acid). Macromolecules 44:3410–3415

    Article  CAS  Google Scholar 

  29. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E (2007) Nucleating agent for poly (l-lactic acid): an optimization of chemical structure of hydrazide compound for advanced nucleation ability. J Appl Polym Sci 103:198–203

    Article  CAS  Google Scholar 

  30. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E (2007) Physical and mechanical properties of poly (l-lactic acid) nucleated by dibenzoylhydrazide Compound. J Appl Polym Sci 103:244–250

    Article  CAS  Google Scholar 

  31. Beck HN, Ledletter HD (1965) DTA study of heterogeneous nucleation of crystallization in polypropylene. J Appl Polym Sci 9:2131–2142

    Article  Google Scholar 

  32. Rybnikar F (1969) Efficiency of nucleating additives in polypropylene. J Appl Polym Sci 13:827–833

    Article  CAS  Google Scholar 

  33. Rybnikar F (1982) Character of crystallization nuclei in isotactic polypropylene. J Appl Polym Sci 27:1479–1487

    Article  CAS  Google Scholar 

  34. Zhao SC, Xu N, Xin Z, Jiang CA (2008) Highly active novel β-nucleating agent for isotactic polypropylene. Polymer 49:2745–2754

    Article  CAS  Google Scholar 

  35. Maria CR, Elpidio T (2011) Crystalline, mobile amorphous and rigid amorphous fractions in poly(l-lactic acid) by TMDSC. Thermochim Acta 522:118–127

    Article  CAS  Google Scholar 

  36. Koh-hei N, Kazunari O (2009) Influence of structural organization on tensile properties in mesomorphic isotactic polypropylene. Polymer 50:4080–4088

    Article  CAS  Google Scholar 

  37. Housmans JW, Gahleitner M, Peters GWM, Han EHM (2009) Structure-property relations in molded, nucleated isotactic polypropylene. Polymer 50:2304–2319

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to National Natural Science Foundation of China (Grant No. 21376031). In addition, the authors also thank Dr. Shicheng Zhao from East China University of Science and Technology for XRD and POM tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Fei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YF., Zhou, PZ., Mao, JJ. et al. Influences of octamethylenedicarboxylic dibenzoylhydrazide on crystallization, melting behaviors, and properties of isotactic polypropylene. Polym. Bull. 76, 1685–1696 (2019). https://doi.org/10.1007/s00289-018-2466-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2466-z

Keywords

Navigation