Skip to main content
Log in

Novel nanogels based on hydroxypropyl cellulose–poly(itaconic acid) for adsorption of methylene blue from aqueous solution: process modeling and optimization using response surface methodology

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present work studies the adsorptive removal of methylene blue (MB) dye from aqueous solution using a novel biocompatible adsorbent based on hydroxypropyl cellulose (HPC) and itaconic acid nanogels. The biocompatible adsorbent was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy and dynamic light scattering analyses. Response surface methodology was used to modeling and optimization of the adsorption process. A second-order empirical relationship between adsorption capacity and independent variables (pH of the solution, contact time and dye concentration) was obtained. The results of design of experiments demonstrated that the predicted values were well fitted with the experimental data where coefficient of determination (R2) equaled 0.9861. Pareto analysis for identification of the factors effect on the system revealed that the initial concentration of MB was the most effective parameter. Maximum removal efficiency (99.9%) was achieved at optimum parameters where pH, MB concentration, and contact time were 5.6, 130 mg L−1, and 5 min, respectively. Furthermore, the adsorption experimental data were well fitted to the Temkin isotherm and pseudo-second-order kinetic model. Consequently, it was found out that the HPC–PIA nanogels with high adsorption capacity (nearly 761 mg g−1) can be a suitable adsorbent for removal of cationic dyes from textile colored wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Entezari M, Al-Hoseini ZS, Ashraf N (2008) Fast and efficient removal of reactive black 5 from aqueous solution by a combined method of ultrasound and sorption process. Ultrason Sonochem 15(4):433–437

    Article  CAS  PubMed  Google Scholar 

  2. Gong R, Li M, Yang C, Sun Y, Chen J (2005) Removal of cationic dyes from aqueous solution by adsorption on peanut hull. J Hazard Mater 121(1):247–250

    Article  CAS  PubMed  Google Scholar 

  3. Mahida VP, Patel MP (2016) Removal of some most hazardous cationic dyes using novel poly (NIPAAm/AA/N-allylisatin) nanohydrogel. Arab J Chem 9(3):430–442

    Article  CAS  Google Scholar 

  4. Rahman MM, Choudhury FA, Hossain MD, Chowdhury MNI, Mohsin S, Hasan MM, Uddin MF, Sarker NC (2014) A Comparative study on the photocatalytic degradation of industrial dyes using modified commercial and synthesized TiO2 photocatalysts. J Chem Eng 27(2):65–71

    Article  Google Scholar 

  5. Zollinger H (2003) Color chemistry: syntheses, properties, and applications of organic dyes and pigments. Wiley, London

    Google Scholar 

  6. Habibi MH, Hassanzadeh A, Mahdavi S (2005) The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions. J Photochem Photobiol A Chem 172(1):89–96

    Article  CAS  Google Scholar 

  7. Hakam A, Rahman IA, Jamil MSM, Othaman R, Amin MCIM, Lazim MASM (2015) Removal of methylene blue dye in aqueous solution by sorption on a bacterial-g-poly-(acrylic acid) polymer network hydrogel. Sains Malays 44(6):827–834

    Article  CAS  Google Scholar 

  8. Frankenburg FR, Baldessarini RJ (2008) Neurosyphilis, malaria, and the discovery of antipsychotic agents. Harvard Rev Psychiatry 16(5):299–307

    Article  Google Scholar 

  9. Oz M, Lorke DE, Petroianu GA (2009) Methylene blue and Alzheimer’s disease. Biochem Pharmacol 78(8):927–932

    Article  CAS  PubMed  Google Scholar 

  10. Lin S, Lo C (1996) Treatment of textile wastewater by foam flotation. Environ Technol 17(8):841–849

    Article  CAS  Google Scholar 

  11. Tahir S, Rauf N (2006) Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere 63(11):1842–1848

    Article  CAS  PubMed  Google Scholar 

  12. Qiu H, Lv L, Pan B-c, Zhang Q-j, Zhang W-m, Zhang Q-x (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10(5):716–724

    Article  CAS  Google Scholar 

  13. Carmen Z, Daniela S (2012) Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents—a critical overview. In: Puzyn T (ed) Organic pollutants ten years after the stockholm convention-environmental and analytical update. InTech, Croatia, pp 55–81

    Google Scholar 

  14. Wen X, Qiao X, Han X, Niu L, Huo L, Bai G (2016) Multifunctional magnetic branched polyethylenimine nanogels with in situ generated Fe3O4 and their applications as dye adsorbent and catalyst support. J Mater Sci 51(6):3170–3181

    Article  CAS  Google Scholar 

  15. Zhang X, Malhotra S, Molina M, Haag R (2015) Micro-and nanogels with labile crosslinks—from synthesis to biomedical applications. Chem Soc Rev 44(7):1948–1973

    Article  CAS  PubMed  Google Scholar 

  16. Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep 93:1–49

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sharma A, Garg T, Aman A, Panchal K, Sharma R, Kumar S, Markandeywar T (2016) Nanogel-an advanced drug delivery tool: current and future. Artif Cells Nanomed Biotechnol 44(1):165–177

    Article  CAS  PubMed  Google Scholar 

  18. Honarkar H, Barikani M (2009) Applications of biopolymers I: chitosan. Monatsh Chem Chem Mon 140(12):1403

    Article  CAS  Google Scholar 

  19. Hu D, Wang P, Ma Q, Wang L (2016) Preparation of a cellulose-based adsorbent with covalently attached hydroxypropyl dodecyldimethylammonium groups for the removal of CI Reactive Blue 21 dye from aqueous solution. Desalin Water Treat 57(23):10604–10615

    Article  CAS  Google Scholar 

  20. Üzüm ÖB, Karadağ E (2011) Dye sorption and water uptake properties of crosslinked acrylamide/sodium methacrylate copolymers and semi-interpenetrating polymer networks composed of PEG. Sep Sci Technol 46(3):489–499

    Article  CAS  Google Scholar 

  21. Wang R, Yu B, Jiang X, Yin J (2012) Understanding the host-guest interaction between responsive core-crosslinked hybrid nanoparticles of hyperbranched poly (ether amine) and dyes: the selective adsorption and smart separation of dyes in water. Adv Funct Mater 22(12):2606–2616

    Article  CAS  Google Scholar 

  22. Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y (2012) Reversible absorption of CO2 triggered by phase transition of amine-containing micro-and nanogel particles. J Am Chem Soc 134(44):18177–18180

    Article  CAS  PubMed  Google Scholar 

  23. Atta A, Akl MA, Youssef AM, Ibraheim MA (2013) Superparamagnetic core-shell polymeric nanocomposites for efficient removal of methylene blue from aqueous solutions. Adsorpt Sci Technol 31(5):397–419

    Article  CAS  Google Scholar 

  24. Akl MA, Sarhan AA, Shoueir KR, Atta AM (2013) Application of crosslinked ionic poly (vinyl alcohol) nanogel as adsorbents for water treatment. J Dispers Sci Technol 34(10):1399–1408

    Article  CAS  Google Scholar 

  25. Lakouraj MM, Mojerlou F, Zare EN (2014) Nanogel and superparamagnetic nanocomposite based on sodium alginate for sorption of heavy metal ions. Carbohyd Polym 106:34–41

    Article  CAS  Google Scholar 

  26. Chatterjee S, Kumar A, Basu S, Dutta S (2012) Application of response surface methodology for methylene blue dye removal from aqueous solution using low cost adsorbent. Chem Eng J 181:289–299

    Article  CAS  Google Scholar 

  27. Dutta S, Bhattacharyya A, Ganguly A, Gupta S, Basu S (2011) Application of response surface methodology for preparation of low-cost adsorbent from citrus fruit peel and for removal of methylene blue. Desalination 275(1):26–36

    Article  CAS  Google Scholar 

  28. Jahangiri M, Bagheri M, Farshi F, Abbasi F (2015) Optimized synthesis of hydroxypropyl cellulose-g-poly (ε-caprolactone) network. J Poly Res 22(10):1–13

    Article  CAS  Google Scholar 

  29. Olad A, Farshi Azhar F, Shargh M, Jharfi S (2014) Application of response surface methodology for modeling of reactive dye removal from solution using starch-montmorillonite/polyaniline nanocomposite. Polym Eng Sci 54(7):1595–1607

    Article  CAS  Google Scholar 

  30. Silva JP, Sousa S, Gonçalves I, Porter JJ, Ferreira-Dias S (2004) Modelling adsorption of acid orange 7 dye in aqueous solutions to spent brewery grains. Sep Purif Technol 40(2):163–170

    Article  CAS  Google Scholar 

  31. Qiu X, Hu S (2013) “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6(3):738–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pulat M, Eksi H (2006) Determination of swelling behavior and morphological properties of poly (acrylamide-co-itaconic acid) and poly (acrylic acid-co-itaconic acid) copolymeric hydrogels. J Appl Polym Sci 102(6):5994–5999

    Article  CAS  Google Scholar 

  33. Betancourt T, Pardo J, Soo K, Peppas NA (2010) Characterization of pH-responsive hydrogels of poly (itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents. J Biomed Mater Res A 93(1):175–188

    PubMed  PubMed Central  Google Scholar 

  34. Hassanpour S, Bagheri M (2017) Dual-responsive semi-IPN copolymer nanogels based on poly (itaconic acid) and hydroxypropyl cellulose as a carrier for controlled drug release. J Polym Res 24(6):91

    Article  CAS  Google Scholar 

  35. Liang C, Rogers C, Malafeew E (1997) Investigation of shape memory polymers and their hybrid composites. J Intell Mater Syst Struct 8(4):380–386

    Article  CAS  Google Scholar 

  36. Özcan A, Ömeroğlu Ç, Erdoğan Y, Özcan AS (2007) Modification of bentonite with a cationic surfactant: an adsorption study of textile dye reactive blue 19. J Hazard Mater 140(1):173–179

    Article  CAS  PubMed  Google Scholar 

  37. Ma L, Kang H, Liu R, Huang Y (2010) Smart assembly behaviors of hydroxypropyl cellulose-graft-poly (4-vinyl pyridine) copolymers in aqueous solution by thermo and pH stimuli. Langmuir 26(23):18519–18525

    Article  CAS  PubMed  Google Scholar 

  38. Miller JN, Miller JC (2005) Statistics and chemometrics for analytical chemistry. Pearson Education, New York

    Google Scholar 

  39. Moghaddam SS, Alavi Moghaddam MR, Arami M (2012) Response surface optimization of acid red 119 dye adsorption by mixtures of dried sewage sludge and sewage sludge ash. Clean Soil Air Water 40(6):652–660

    Article  CAS  Google Scholar 

  40. Zhu H-Y, Fu Y-Q, Jiang R, Yao J, Xiao L, Zeng G-M (2012) Novel magnetic chitosan/poly (vinyl alcohol) hydrogel beads: preparation, characterization and application for adsorption of dye from aqueous solution. Bioresour Technol 105:24–30

    Article  CAS  PubMed  Google Scholar 

  41. Pandey S, Mishra SB (2011) Organic–inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake. J Colloid Interface Sci 361(2):509–520

    Article  CAS  PubMed  Google Scholar 

  42. Gimbert F, Morin-Crini N, Renault F, Badot P-M, Crini G (2008) Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J Hazard Mater 157(1):34–46

    Article  CAS  PubMed  Google Scholar 

  43. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  44. Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57(385471):1100–1107

    Google Scholar 

  45. Hameed B, Tan I, Ahmad A (2008) Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology. J Hazard Mater 158(2):324–332

    Article  CAS  PubMed  Google Scholar 

  46. Bayramoglu G, Altintas B, Arica MY (2009) Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chem Eng J 152(2):339–346

    Article  CAS  Google Scholar 

  47. Tempkin M, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR 12(1):327

    Google Scholar 

  48. Auta M, Hameed B (2011) Optimized waste tea activated carbon for adsorption of methylene blue and acid blue 29 dyes using response surface methodology. Chem Eng J 175:233–243

    Article  CAS  Google Scholar 

  49. Roosta M, Ghaedi M, Daneshfar A, Sahraei R, Asghari A (2014) Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology. Ultrason Sonochem 21(1):242–252

    Article  CAS  PubMed  Google Scholar 

  50. Tehrani MS, Zare-Dorabei R (2016) Competitive removal of hazardous dyes from aqueous solution by MIL-68 (Al): derivative spectrophotometric method and response surface methodology approach. Acta A Mol Biomol Spectrosc 160:8–18

    Article  CAS  Google Scholar 

  51. Ghaedi M, Pakniat M, Mahmoudi Z, Hajati S, Sahraei R, Daneshfar A (2014) Synthesis of nickel sulfide nanoparticles loaded on activated carbon as a novel adsorbent for the competitive removal of methylene blue and safranin-O. Spectrochim Acta A Mol Biomol Spectrosc 123:402–409

    Article  CAS  PubMed  Google Scholar 

  52. Sadhukhan B, Mondal NK, Chattoraj S (2016) Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto Lemna major. Karbala Int J Mod Sci 2(3):145–155

    Article  Google Scholar 

  53. Ghaedi M, Ghazanfarkhani MD, Khodadoust S, Sohrabi N, Oftade M (2014) Acceleration of methylene blue adsorption onto activated carbon prepared from dross licorice by ultrasonic: equilibrium, kinetic and thermodynamic studies. J Ind Eng Chem 20(4):2548–2560

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Vice Chancellor of Research of Azarbaijan Shahid Madani University, for financially supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fahimeh Farshi Azhar or Massoumeh Bagheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanpour, S., Farshi Azhar, F. & Bagheri, M. Novel nanogels based on hydroxypropyl cellulose–poly(itaconic acid) for adsorption of methylene blue from aqueous solution: process modeling and optimization using response surface methodology. Polym. Bull. 76, 933–952 (2019). https://doi.org/10.1007/s00289-018-2419-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2419-6

Keywords

Navigation