Skip to main content
Log in

Optical properties of PVC/Al2O3 nanocomposite films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, polyvinyl chloride (PVC) polymer films doped with 0, 2, 4, and 6 wt% Al2O3 nanoparticles with average size of 10 nm were prepared by solution casting route. Al2O3 nanoparticles are found to possess rhombohedral crystal structure, and PVC is partly crystallized as confirmed with XRD analysis. SEM images showed that Al2O3 nanoparticles are well distributed in the PVC film surface. The direct optical energy gap (Eopt) decreased from 5.05 to 3.60 eV and Urbach energy (EU) increased with increasing Al2O3 concentration. The typical excitation energy for electronic transitions (E0), the dispersion energy (Ed), refractive index, dipole strength (f), average oscillator wavelength (λ0), oscillator strength parameter (S0), optical conductivity, and both static and high-frequency dielectric constants are found to increase with increasing Al2O3 content. The third-order nonlinear optical susceptibility (χ(3)) and the nonlinear refractive index (n2) were estimated. Also, the ratio of free carriers to effective mass (N/m*) increased from 2.69 × 1057 to 170.91 × 1057 m−3 kg−1 with increasing Al2O3 nanoparticles percentage. Finally, the group velocity dispersion (GVD), dispersion coefficient for material dispersion (D), and third-order dispersion (TOD) are found to increase upon increasing Al2O3 filler ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Trindade T, Neves MC, Barros AMV (2000) Preparation and optical properties of CdSe/polymer nanocomposites. Scr Mater 43(6):567–571

    Article  CAS  Google Scholar 

  2. Bhiwankar NN, Weiss RA (2006) Melt intercalation/exfoliation of polystyrene–sodium-montmorillonite nanocomposites using sulfonated polystyrene ionomer compatibilizers. Polymer 47(19):6684–6691

    Article  CAS  Google Scholar 

  3. Bouropoulos N, Psarras GC, Moustakas N, Chrissanthopoulos A, Baskoutas S (2008) Optical and dielectric properties of ZnO-PVA nanocomposites. Phys Status Solidi (a) 205(8):2033–2037

    Article  CAS  Google Scholar 

  4. Sterky K, Jacobsen H, Jakubowicz I, Yarahmadi N, Hjertberg T (2010) Influence of processing technique on morphology and mechanical properties of PVC nanocomposites. Eur Polymer J 46(6):1203–1209

    Article  CAS  Google Scholar 

  5. Roy AS, Gupta S, Sindhu S, Parveen A, Ramamurthy PC (2013) Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos B Eng 47:314–319

    Article  CAS  Google Scholar 

  6. Ebnalwaled AA, Thabet A (2016) Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth Met 220:374–383

    Article  CAS  Google Scholar 

  7. Abdullah OG, Salman YA, Saleem SA (2016) Electrical conductivity and dielectric characteristics of in situ prepared PVA/HgS nanocomposite films. J Mater Sci Mater Electron 27(4):3591–3598

    Article  CAS  Google Scholar 

  8. Al-Hartomy OA, Al-Salamy F, Al-Ghamdi AA, Abdel Fatah M, Dishovsky N, El-Tantawy F (2011) Influence of graphite nanosheets on the structure and properties of PVC-based nanocomposites. J Appl Polym Sci 120(6):3628–3634

    Article  CAS  Google Scholar 

  9. Kemal I, Whittle A, Burford R, Vodenitcharova T, Hoffman M (2013) Toughening of unmodified polyvinylchloride through the addition of nanoparticulate calcium carbonate and titanate coupling agent. J Appl Polym Sci 127(3):2339–2353

    Article  CAS  Google Scholar 

  10. Mathur V, Patidar D, Sharma K (2015) Effect of nano CdS dispersion on thermal conductivity of PS/PVC and PS/PMMA polymeric blend nanocomposites. Appl Nanosci 5(5):623–628

    Article  CAS  Google Scholar 

  11. Kobayashi S, Mullen K (2015) Encyclopedia of Polymeric Nanomaterials. Springer, Heidelberg, p 1740

    Book  Google Scholar 

  12. Deshmukh S, Burghate D, Shilaskar S, Chaudhari G, Deshmukh P (2008) Optical properties of polyaniline doped PVC-PMMA thin films. Indian J Pure Appl Phys 46(5):344–348

    CAS  Google Scholar 

  13. Mahmoud WE, Al-Ghamdi AA (2011) The influence of Cd (ZnO) on the structure, optical and thermal stabilities of polyvinyl chloride nanocomposites. Polym Compos 32(7):1143–1147

    Article  CAS  Google Scholar 

  14. Abdullah ET, Hasan SM, Naje AN (2013) Optical properties of PVC-MWCNT nano composites. Indian J Pure Appl Phys 51:77–80

    CAS  Google Scholar 

  15. Sayed AM, Morsi WM (2013) Dielectric relaxation and optical properties of polyvinyl chloride/lead monoxide nanocomposites. Polym Compos 34(12):2031–2039

    Article  CAS  Google Scholar 

  16. Abdul Nabi M, Yusop RM, Yousif E, Abdullah BM, Salimon J, Salih N, Zubairi SI (2014) Effect of nano ZnO on the optical properties of poly (vinyl chloride) films. Int J Polym Sci 2014:697809-1–697809-6

    Google Scholar 

  17. Hassen A, El-Sayed S, Morsi WM, El Sayed AM (2014) Preparation, dielectric and optical properties of Cr2O3/PVC Nanocomposite films. J Adv Phys 4:571–584

    Article  Google Scholar 

  18. Taha TA (2017) Optical and thermogravimetric analysis of Pb3O4/PVC nanocomposites. J Mater Sci Mater Electron 28(16):12108–12114

    Article  CAS  Google Scholar 

  19. Allen NS, Edge M, Rodriguez M, Liauw CM, Fontan E (2000) Aspects of the thermal oxidation of ethylene vinyl acetate copolymer. Polym Degrad Stab 68(3):363–371

    Article  CAS  Google Scholar 

  20. Giuffrida S, Condorelli GG, Costanzo LL, Ventimiglia G, Di Mauro A, Fragalà IL (2008) In situ synthesis of photoluminescent films of PVC, doped with Ce 3 + ion. J Photochem Photobiol A 195(2):215–222

    Article  CAS  Google Scholar 

  21. Mortazavi SH, Ghoranneviss M, Faryadras S (2012) Effect of low pressure nitrogen DC plasma on optical properties of biaxial-oriented polypropylene (BOPP), poly methyl methacrylate (PMMA) and poly vinyl chloride (PVC) films. J Fusion Energy 31(3):211–215

    Article  CAS  Google Scholar 

  22. Gündüz B (2013) Effects of molarity and solvents on the optical properties of the solutions of tris [4-(5-dicyanomethylidenemethyl-2-thienyl) phenyl] amine (TDCV-TPA) and structural properties of its film. Opt Mater 36(2):425–436

    Article  Google Scholar 

  23. Mahmoud WE, Al-Ghamdi AA, Al-Agel F (2011) Synthesis and optical properties of poly (vinyl acetate)/bismuth oxide nanorods. Polym Adv Technol 22(12):2055–2061

    Article  CAS  Google Scholar 

  24. Mahmoud WE, Shirbeeny W, Al-Ghamdi AA, Al-Heniti S (2012) Synthesis and characterization of CdxZn1 − xO nanoparticles-doped aryl poly ether ether ketone for novel application potentials. J Appl Polym Sci 125(1):339–343

    Article  CAS  Google Scholar 

  25. Taha TA, Rammah YS (2016) Optical characterization of new borate glass doped with titanium oxide. J Mater Sci Mater Electron 27(2):1384–1390

    Article  CAS  Google Scholar 

  26. Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92(5):1324

    Article  CAS  Google Scholar 

  27. Raja V, Sarma AK, Rao VN (2003) Optical properties of pure and doped PMMA-CO-P4VPNO polymer films. Mater Lett 57(30):4678–4683

    Article  CAS  Google Scholar 

  28. Tommalieh MJ, Zihlif AM (2010) Optical properties of polyimide/silica nanocomposite. Phys B 405(23):4750–4754

    Article  CAS  Google Scholar 

  29. Yahia IS, Farag AAM, Cavas M, Yakuphanoglu F (2013) Effects of stabilizer ratio on the optical constants and optical dispersion parameters of ZnO nano-fiber thin films. Superlattices Microstruct 53:63–75

    Article  CAS  Google Scholar 

  30. Güneri E, Kariper A (2012) Optical properties of amorphous CuS thin films deposited chemically at different pH values. J Alloy Compd 516:20–26

    Article  Google Scholar 

  31. Göde F (2011) Annealing temperature effect on the structural, optical and electrical properties of ZnS thin films. Phys B 406(9):1653–1659

    Article  Google Scholar 

  32. Oubaha M, Elmaghrum S, Copperwhite R, Corcoran B, McDonagh C, Gorin A (2012) Optical properties of high refractive index thin films processed at low-temperature. Opt Mater 34(8):1366–1370

    Article  CAS  Google Scholar 

  33. Leguijt C, Lölgen P, Eikelboom JA, Weeber AW, Schuurmans FM, Sinke WC, Verhoef LA (1996) Low temperature surface passivation for silicon solar cells. Sol Energy Mater Sol Cells 40(4):297–345

    Article  CAS  Google Scholar 

  34. Cusano A, Iadicicco A, Paladino D, Campopiano S, Cutolo A, Giordano M (2007) Micro-structured fiber Bragg gratings. Part II: towards advanced photonic devices. Opt Fiber Technol 13:291–301

    Article  CAS  Google Scholar 

  35. Kohoutek T, Orava J, Sawada T, Fudouzi H (2011) Inverse opal photonic crystal of chalcogenide glass by solution processing. J Colloid Interface Sci 353(2):454–458

    Article  CAS  Google Scholar 

  36. Ho WF, Uddin MA, Chan HP (2009) The stability of high refractive index polymer materials for high-density planar optical circuits. Polym Degrad Stab 94(2):158–161

    Article  CAS  Google Scholar 

  37. Sakr GB, Yahia IS, Fadel M, Fouad SS, Romčević N (2010) Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films. J Alloy Compd 507(2):557–562

    Article  CAS  Google Scholar 

  38. Wemple SH, DiDomenico M Jr (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev B 3(4):1338

    Article  Google Scholar 

  39. Wemple SH (1973) Refractive-index behavior of amorphous semiconductors and glasses. Phys Rev B 7(8):3767

    Article  CAS  Google Scholar 

  40. Wemple SH, DiDomenico M Jr (1969) Optical dispersion and the structure of solids. Phys Rev Lett 23(20):1156

    Article  CAS  Google Scholar 

  41. Gündüz B (2015) Sensing and surface morphological properties of a poly [(9, 9-dioctylfluorenyl-2, 7-diyl)-co-bithiophene] liquid-crystalline polymer for optoelectronic applications. J Appl Polym Sci 132(11):41659-1–41659-8

    Google Scholar 

  42. Frumar M, Jedelský J, Frumarova B, Wagner T, Hrdlička M (2003) Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J Non-Cryst Solids 326:399–404

    Article  Google Scholar 

  43. Gündüz B (2015) Optical properties of poly [2-methoxy-5-(3′, 7′-dimethyloctyloxy)-1, 4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents. Polym Bull 72(12):3241–3267

    Article  Google Scholar 

  44. Ticha H, Tichy L (2002) Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J Optoelectron Adv Mater 4(2):381–386

    CAS  Google Scholar 

  45. Adair R, Chase LL, Payne SA (1989) Nonlinear refractive index of optical crystals. Phys Rev B 39(5):3337

    Article  CAS  Google Scholar 

  46. Zahran HY, Yahia IS, Alamri FH (2017) Nanostructured pyronin Y thin films as a new organic semiconductor: Linear/nonlinear optics, band gap and dielectric properties. Phys B Condens Matter 513(95–102):39

    Google Scholar 

  47. Yakuphanoglu F, Cukurovali A, Yilmaz I (2004) Determination and analysis of the dispersive optical constants of some organic thin films. Phys B Condens Matter 351(1):53–58

    Article  CAS  Google Scholar 

  48. Fadel M, Fayek SA, Abou-Helal MO, Ibrahim MM, Shakra AM (2009) Structural and optical properties of SeGe and SeGeX (X = In, Sb and Bi) amorphous films. J Alloy Compd 485(1):604–609

    Article  CAS  Google Scholar 

  49. Khan SA, Al-Hazmi FS, Al-Heniti S, Faidah AS, Al-Ghamdi AA (2010) Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se–S–Cd thin films. Curr Appl Phys 10(1):145–152

    Article  Google Scholar 

  50. El-Korashy A, El-Zahed H, Radwan M (2003) Optical studies of [N (CH 3) 4] 2 CoCl 4,[N (CH 3) 4] 2 MnCl 4 single crystals in the normal paraelectric phase. Phys B 334(1):75–81

    Article  CAS  Google Scholar 

  51. Wakkad MM, Shokr EK, Mohamed SH (2000) Optical and calorimetric studies of Ge–Sb–Se glasses. J Non-Cryst Solids 265(1):157–166

    Article  CAS  Google Scholar 

  52. Pankove JI (1975) Optical processes in semiconductors. Dover Publications Inc., New York, p 91

    Google Scholar 

  53. Mansour AF, Mansour SF, Abdo MA (2015) Improvement structural and optical properties of ZnO/PVA nanocomposites. IOSR J Appl Phys 7(2):60–69

    Google Scholar 

  54. Diels Jean Claude, Rudolph Wolfgang (2006) Ultrashort laser pulse phenomena: fundamentals, techniques, and applications on a femtosecond time scale. Academic Press, USA, p 32

    Google Scholar 

  55. Gan F (1995) Optical properties of fluoride glasses: a review. J Non-Cryst Solids 184:9–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Taha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, T.A. Optical properties of PVC/Al2O3 nanocomposite films. Polym. Bull. 76, 903–918 (2019). https://doi.org/10.1007/s00289-018-2417-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2417-8

Keywords

Navigation