Skip to main content
Log in

The α-, β-, and γ-polymorphs of polypropylene–polyethylene random copolymer modified by two kinds of β-nucleating agent

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The α-, β-, and γ-polymorphs of polypropylene random copolymer with two kinds of β-nucleating agent (TMB-5 and WBG-2) have been studied via wide-angle X-ray diffraction and differential scanning calorimetry. It was found that the addition of 0.5 wt% β-nucleating agent (β-NA) hardly induces appreciable β-modification content, until β-NA content is up to 1 wt%. It seems that low amount of β-NA is not enough to counterbalance the nucleation ability and high content of defects (stereo- and regioerrors) of co-PP, and only α- and γ-modifications are obtained in the samples. Moreover, the relative amount of γ-crystal depends on the crystallization temperature. Although TMB-5 has better heterogeneous nucleation effect than WBG-2, the ability to form stable β-polymorph of WBG-2 is stronger than that of TMB-5. Since large amount of β-nucleation sites overcome the defects of co-PP molecular chain and curb the formation of γ-crystal, competitive growth of α- and β-polymorphs ultimately leads to the coexistence of α- and β-modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Varga J (1992) Supermolecular structure of isotactic polypropylene. J Mater Sci 27:2557–2579

    Article  CAS  Google Scholar 

  2. Phillips PJ, Mezghani K (1996) Polypropylene, isotactic (polymorphism). In: Salamone JC (ed) The polymeric materials encyclopedia, vol 9. CRC Press, Boca Raton, p 6637

    Google Scholar 

  3. Cerrada ML (2009) Formation of the new trigonal polymorph in iPP–1-hexene copolymers. Competition with the mesomorphic phase. Macromolecules 42:702–708

    Article  CAS  Google Scholar 

  4. Corradini P, de Rosa C, Guerra G, Petraccone V (1989) Comments on the possibility that the mesomorphic form of isotactic polypropylene is composed of small crystals of the β crystalline form. Polym Commun 30:281–285

    CAS  Google Scholar 

  5. Arranz-Andrés J, Benavente R, Pérez E, Cerrada ML (2003) Structure and mechanical behavior of the mesomorphic form in a propylene-b-poly(ethylene-co-propylene) copolymer and its comparison with other thermal treatments. Polym J 35:766–777

    Article  Google Scholar 

  6. Brückner S, Meille SV, Petraccone V, Pirozzi B (1991) Polymorphism in isotactic polypropylene. Prog Polym Sci 16:361–404

    Article  Google Scholar 

  7. Lotz B, Wittmann JC, Lovinger AJ (1996) Structure and morphology of poly(propylenes): a molecular analysis. Polymer 37:4979–4992

    Article  CAS  Google Scholar 

  8. Krache R, Benavente R, López-Majada JM (2007) Competition between α, β, and γ polymorphs in a β-nucleated metallocenic isotactic polypropylene. Macromolecules 40:6871–6878

    Article  CAS  Google Scholar 

  9. Natta G, Corradini P (1960) Crystal structure of poly-ortho-methylstyrene. Nuovo Cimento Suppl 15:40

    Article  CAS  Google Scholar 

  10. Meille SV, Ferro D, Brückner S, Lovinger AJ, Padden FJ (1994) Structure of beta-isotactic polypropylene: a long-standing structural puzzle. Macromolecules 27:2615–2622

    Article  CAS  Google Scholar 

  11. Mezghani K, Phillips PJ (1998) The γ-phase of high molecular weight isotactic polypropylene: III. The equilibrium melting point and the phase diagram. Polymer 39:3735–3744

    Article  CAS  Google Scholar 

  12. Dimeska A, Phillips PJ (2006) High pressure crystallization of random propylene–ethylene copolymers: αγ phase diagram. Polymer 47:5445–5456

    Article  CAS  Google Scholar 

  13. Varga J (1995) Crystalline, melting and supermolecular structure of isotactic polypropylene. In: Karger-Kocsis J (ed) Polypropylene: structure, blends and composites, vol 1. Chapman and Hall, London, p 56

    Chapter  Google Scholar 

  14. Zhou M, Li XP (2016) Simultaneously improving the tensile and impact properties of isotactic polypropylene with the cooperation of co-PP and β-nucleating agent through pressure vibration injection molding. Chin J Polym Sci 34:1001–1013

    Article  CAS  Google Scholar 

  15. Liu ZZ, Liu XH (2017) Mechanical enhancement of melt-stretched β-nucleated isotactic polypropylene: the role of lamellar branching of β-crystal. Polym Test 58:227–235

    Article  CAS  Google Scholar 

  16. Brückner S, Meille SV (1989) Non-parallel chains in crystalline γ-isotactic polypropylene. Nature 340:455–457

    Article  Google Scholar 

  17. Addink EJ, Beintema J (1961) Polymorphism of crystalline polypropylene. Polymer 2:185–193

    Article  CAS  Google Scholar 

  18. Sowinski P, Piorkowska E (2016) Nucleation of crystallization of isotactic polypropylene in the gamma form under high pressure in nonisothermal conditions. Eur Polym J 85:564–574

    Article  CAS  Google Scholar 

  19. Mezghani K, Phillips PJ (1997) The γ-phase of high molecular weight isotactic polypropylene. II: the morphology of the γ-form crystallized at 200 Mpa. Polymer 38:5725–5733

    Article  CAS  Google Scholar 

  20. Hosier IL, Alamo RG, Esteso P, Isasi JR, Mandelkern L (2003) Formation of the α and γ polymorphs in random metallocene–propylene copolymers. Effect of concentration and type of comonomer. Macromolecules 36:5623–5636

    Article  CAS  Google Scholar 

  21. De Rosa C, Aurienma F, Paolillo M, Resconi L, Camurati I (2005) Crystallization behavior and mechanical properties of regiodefective, highly stereoregular isotactic polypropylene:  effect of regiodefects versus stereodefects and influence of the molecular mass. Macromolecules 38:9143–9154

    Article  CAS  Google Scholar 

  22. Wiyatno W, Fuller GG, Pople JA, Gast AP, Chen Z, Waymouth RM, Myers CL (2003) Component stress–strain behavior and small-angle neutron scattering investigation of stereoblock elastomeric polypropylene. Macromolecules 36:1178–1187

    Article  CAS  Google Scholar 

  23. Wiyatno W, Chen Z, Liu Y, Waymouth RM, Krukonis V, Brennan K (2004) Heterogeneous composition and microstructure of elastomeric polypropylene from a sterically hindered 2-arylindenylhafnium catalyst. Macromolecules 37:701–708

    Article  CAS  Google Scholar 

  24. Auriemma F, De Rosa C (2002) Crystallization of metallocene-made isotactic polypropylene:  disordered modifications intermediate between the α and γ forms. Macromolecules 35:9057–9068

    Article  CAS  Google Scholar 

  25. Auriemma F, De Rosa C (2006) Stretching isotactic polypropylene:  from “cross-β” to crosshatches, from γ form to α form. Macromolecules 39:7635–7647

    Article  CAS  Google Scholar 

  26. Alamo RG, Ghosal A, Chatterjee J, Thompson KL (2005) Linear growth rates of random propylene ethylene copolymers. The changeover from γ dominated growth to mixed (α + γ) polymorphic growth. Polymer 46:8774–8789

    Article  CAS  Google Scholar 

  27. Jeona K, Palza H, Quijada R, Alamo RG (2009) Effect of comonomer type on the crystallization kinetics and crystalline structure of random isotactic propylene 1-alkene copolymers. Polymer 50:832–844

    Article  CAS  Google Scholar 

  28. Poon B, Rogunova M, Hiltner A, Baer E, Chum SP, Galeski A, Piorkowska E (2005) Structure and properties of homogeneous copolymers of propylene and 1-hexene. Macromolecules 38:1232–1243

    Article  CAS  Google Scholar 

  29. De Rosa C, Auriemma F, de Ballesteros OR, Resconi L, Camurati I (2007) Crystallization behavior of isotactic propylene–ethylene and propylene–butene copolymers:  effect of comonomers versus stereodefects on crystallization properties of isotactic polypropylene. Macromolecules 40:6600–6616

    Article  CAS  Google Scholar 

  30. De Rosa C, Auriemma F, de Ballesteros OR, De Luca D, Resconi L (2008) The double role of comonomers on the crystallization behavior of isotactic polypropylene:  propylene–hexene copolymers. Macromolecules 41:2172–2177

    Article  CAS  Google Scholar 

  31. Alamo RG, Kim M-H, Galante MJ, Isasi JR, Mandelkern L (1999) Structural and kinetic factors governing the formation of the γ polymorph of isotactic polypropylene. Macromolecules 32:4050–4064

    Article  CAS  Google Scholar 

  32. Gou Q, Li H, Yu Z, Chen E, Zhang Y, Yan S (2007) Crystallization behavior of a propylene-1-butene random copolymer in its α and γ modifications. Colloid Polym Sci 285:1149–1155

    Article  CAS  Google Scholar 

  33. Luo Feng, Chenlong Xu, Wang Ke (2012) Exploring temperature dependence of the toughening behavior of β-nucleated impact polypropylene copolymer. Polymer 53:1783–1790

    Article  CAS  Google Scholar 

  34. Lotz B (1998) α and β phases of isotactic polypropylene: a case of growth kinetics `phase reentrency’ in polymer crystallization. Polymer 39(19):4561–4567

    Article  CAS  Google Scholar 

  35. Li JX, Cheung WL (1998) On the deformation mechanisms of β-polypropylene: effect of necking on β-phase PP crystals. Polymer 39(26):6935–6940

    Article  CAS  Google Scholar 

  36. Li JX, Cheung WL (1999) A study on the heat of fusion of β-polypropylene. Polymer 40(8):1219–1222

    Article  CAS  Google Scholar 

  37. Turner-Jones A, Cobbold A (1968) The β crystalline form of isotactic polypropylene. J Polym Lett 6:539–546

    Article  CAS  Google Scholar 

  38. Turner JA, Aizlewood J, Beckett D (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134–153

    Article  Google Scholar 

  39. Zhang Y, Zhang L, Liu H (2013) Novel approach to tune mechanics of β-nucleation agent nucleated polypropylene: role of oriented β spherulite. Polymer 54(21):6026–6035

    Article  CAS  Google Scholar 

  40. Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Nuovo Cimento Suppl 15:40–51

    Article  CAS  Google Scholar 

  41. Brückner S, Meille SV (1989) Non-parallel chains in crystalline γ-isotactic polypropylene. Nature 340(6233):455–457

    Article  Google Scholar 

  42. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer 19(10):1142–1144

    Article  CAS  Google Scholar 

  43. Razavi-Nouri Mohammad (2009) Study of non-isothermal crystallization kinetics of single-walled carbon nanotubes filled polypropylene using Avrami and Mo models. Iran Polym J 18(2):167–178

    CAS  Google Scholar 

  44. Joshi A, Butola BS (2004) Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer 45(14):4953–4968

    Article  CAS  Google Scholar 

  45. Ahmed J, Luciano G, Schizzi I, Arfat YA, Maggiore S (2018) Non-isothermal crystallization behavior, rheological properties and morphology of poly(ε-caprolactone)/graphene oxide nanosheets composite films. Thermochim Acta 659:96–104

    Article  CAS  Google Scholar 

  46. Jape SP, Deshpande VD (2017) Nonisothermal crystallization kinetics of nylon 66/LCP blends. Thermochim Acta 655:1–12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our great thanks to National Natural Science Foundation of China (51433006) and Sichuan Science and Technology Project (2017JY0069) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Li, X., Zhou, M. et al. The α-, β-, and γ-polymorphs of polypropylene–polyethylene random copolymer modified by two kinds of β-nucleating agent. Polym. Bull. 76, 865–881 (2019). https://doi.org/10.1007/s00289-018-2413-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2413-z

Keywords

Navigation