Polymer Bulletin

, Volume 76, Issue 2, pp 825–848 | Cite as

Study of phase separation behavior of poly(N,N-diethylacrylamide) in aqueous solution prepared by RAFT polymerization

  • Mei Wu
  • Haibing Zhang
  • Hongliang LiuEmail author
Original Paper


A series of poly(N,N-diethylacrylamide) samples with low molecular weights (1.9 × 103–5.3 × 104) and narrow polydispersities (below 1.5 and usually lower than 1.25) was synthesized by reversible addition-fragmentation chain transfer polymerization. The phase separation behavior of poly(N,N-diethylacrylamide) in aqueous solution was investigated by turbidimetry, fluorescent probe technology and DSC. It is interesting to find that the lower critical solution temperature (LCST) of the samples increases with increasing molecular weight and remains more or less a constant above a critical molecular weight of 1.2 × 104. At the same time, an inverse dependence of LCST on the concentration was found and this effect was more pronounced for lower molecular weight. To further investigate the novel molecular weight dependence of the LCST, the fluorescent probe study was conducted and the experimental results demonstrated that there was an increase in hydrophobicity when decreasing the molecular weight and increasing the concentration and flower-like micelles were probably formed which can further be proved by TEM.


Lower critical solution temperature (LCST) Molecular weight Micelles Reversible addition-fragmentation chain transfer (RAFT) 



This research is supported by the National Natural Science Foundation (21404109) and Science Foundation of China University of Petroleum-Beijing at Karamay (RCYJ2016B-03-003, RCYJ2016B-02-005).

Supplementary material

289_2018_2411_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1206 kb)


  1. 1.
    Privalov PL (1979) Stability of proteins small globular proteins. Adv Protein Chem 33:167–241. CrossRefGoogle Scholar
  2. 2.
    Privalov PL, Creighton TE (eds) (1992) In protein folding. W. H. Freeman & Co, New York, p 83Google Scholar
  3. 3.
    Privalov PL (1982) Stability of proteins: proteins which do not present a single cooperative system. Adv Protein Chem 35:1–104. CrossRefGoogle Scholar
  4. 4.
    Freire E, Murphy KP (1991) Molecular basis of co-operativity in protein folding. J Mol Biol 222:687–698. CrossRefGoogle Scholar
  5. 5.
    Bychkova VE, Berni R, Rossi GL, Kutyshenko VP, Ptitsyn OB (1992) Retinol-binding protein is in the molten globule state at low pH. Biochemistry 31:7566–7571. CrossRefGoogle Scholar
  6. 6.
    Schild HG, Tirrell DA (1990) Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J Phys Chem 94:4352–4356. CrossRefGoogle Scholar
  7. 7.
    Shunsuke K, Sokei S, Takahiro O, Tomohiro H, Koichi U, Cheng H, Tetsuo A (2017) NMR studies of water dynamics during sol-to-gel transition of poly(N-isopropylacrylamide) in concentrated aqueous solution. Polymer 109:287–296. CrossRefGoogle Scholar
  8. 8.
    Takanori T, Tomohiro H, Koichi U, Yukiteru K, Taka-Aki A, Tatsuya S, Noboru K, Yasuyuki T (2016) Effects of syndiotacticity on the dynamic and static phase separation properties of poly(N-isopropylacrylamide) in aqueous solution. J Phys Chem B 120:7724–7730. CrossRefGoogle Scholar
  9. 9.
    Fujishige S, Kubota K, Ando I (1989) Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J Phys Chem 93:3311–3313. CrossRefGoogle Scholar
  10. 10.
    Kenji M, Tomonari S, Kenichiro K (2016) Liquid–liquid phase separation of N-isopropylpropionamide aqueous solutions above the lower critical solution temperature. Sci Rep 6:24657. CrossRefGoogle Scholar
  11. 11.
    Wu C, Zhou SQ (1995) Laser light scattering study of the phase transition of poly(N-isopropylacrylamide) in water. 1. Single Chain. Macromolecules 28:8381–8387. CrossRefGoogle Scholar
  12. 12.
    Zeng F, Zheng X, Tong Z (1998) Network formation in poly(N-isopropyl acrylamide)/water solutions during phase separation. Polymer 39:1249–1251. CrossRefGoogle Scholar
  13. 13.
    Lessard DG, Ousalem M, Zhu XX (2001) Effect of the molecular weight on the lower critical solution temperature of poly(N,N-diethylacrylamide) in aqueous solutions. Can J Chem 79:1870–1874. CrossRefGoogle Scholar
  14. 14.
    Idziak I, Acoce D, Lessard D, Gravel D, Zhu XX (1999) Thermosensitivity of aqueous solutions of poly(N,N-diethylacrylamide). Macromolecules 32:1260–1263. CrossRefGoogle Scholar
  15. 15.
    Mitsuhiro M, Ryo W, Takanori T, Taka-Aki A, Tatsuya S, Noboru K, Yasuyuki T (2016) Rapid phase separation in aqueous solution of temperature-sensitive poly(N,N-diethylacrylamide). Macromol Chem Phys 217:2576–2583. CrossRefGoogle Scholar
  16. 16.
    Plate NA, Lebedeva LI, Valuev LI (1999) Lower critical solution temperature in aqueous solutions of N-alkyl-substituted polyacrylamides. Polym J 31:21–27. CrossRefGoogle Scholar
  17. 17.
    Okano T (1993) Molecular design of temperature-responsive polymers as intelligent materials. Adv Polym Sci 110:179–197. CrossRefGoogle Scholar
  18. 18.
    Miyajima M, Yoshida M, Sato H, Omichi H, Katakai R, Higuchi WI (1994) In vitro release of 9-β-d-arabinofuranosyladenine from thermo-responsive copoly(acryloyl-l-proline methyl ester/styrene) gels. Eur Polym J 30:827–831. CrossRefGoogle Scholar
  19. 19.
    Chen JP, Hsu (1997) Preparations and properties of temperature-sensitive poly(N-isopropylacrylamide)-chymotrypsin conjugates. J Mol Catal B Enzym 2:233–241. CrossRefGoogle Scholar
  20. 20.
    Xue W, Champ S, Huglin MB (2001) New superabsorbent thermoreversible hydrogels. Polymer 42:2247–2250. CrossRefGoogle Scholar
  21. 21.
    Snowden MJ, Thomas D, Vincent B (1993) Use of colloidal microgels for the absorption of heavy metal and other ions from aqueous solution. Analyst 118:1367–1369. CrossRefGoogle Scholar
  22. 22.
    Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci A2:1441–1455. CrossRefGoogle Scholar
  23. 23.
    Taylor LD, Cerankowski LD (1975) Preparation of films exhibiting a balanced temperature dependence to permeation by aqueous solutions—a study of lower consolute behavior. J Polym Sci 11:2551–2570. Google Scholar
  24. 24.
    Eliassaf J (1978) Aqueous solutions of poly(N-isopropylacrylamide). J Appl Polym Sci 22:873–874. CrossRefGoogle Scholar
  25. 25.
    Lee LT, Cabane B (1997) Effects of surfactants on thermally collapsed poly(N-isopropylacrylamide) macromolecules. Macromolecules 30:6559–6566. CrossRefGoogle Scholar
  26. 26.
    Staikos G (1995) Viscometric study of the coil-globule transition of poly(N-isopropylacrylamide) in solutions of surfactant. Macromol Rapid Commun 16:913–917. CrossRefGoogle Scholar
  27. 27.
    Schild HG, Muthukumar M, Tirrell DA (1991) Cononsolvency in mixed aqueous solutions of poly(N-isopropylacrylamide). Macromolecules 24:948–952. CrossRefGoogle Scholar
  28. 28.
    Tong Z, Zeng F, Zheng X (1999) Inverse molecular weight dependence of cloud points for aqueous poly(N-isopropylacrylamide) solutions. Macromolecules 32:4488–4490. CrossRefGoogle Scholar
  29. 29.
    Otake K, Karaki R, Ebina T, Yokoyama C, Takahashi S (1993) Pressure effects on the aggregation of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid) in aqueous solutions. Macromolecules 26:2194–2197. CrossRefGoogle Scholar
  30. 30.
    Xue W, Huglin MB, Jones TGJ (2003) Parameters affecting the lower critical solution temperature of linear and crosslinked poly(N-ethylacrylamide) in aqueous media. Macromol Chem Phys 204:1956–1965. CrossRefGoogle Scholar
  31. 31.
    Zheng X, Tong Z, Xie XL, Zeng F (1998) Phase separation in poly(N-isopropyl acrylamide)/water solutions I. cloud point curves and microgelation. Polym J (Tokyo) 30:284–288. CrossRefGoogle Scholar
  32. 32.
    Elizaveta IT, Vladimir NU, Vanda BL, Stanislav IK, Valentina EB, Oleg BP (1995) ”Domain” coil-globule transition in homopolymers. Macromolecules 28:7519–7524. CrossRefGoogle Scholar
  33. 33.
    Ru GY, Feng JW (2001) Effect of end groups on phase transition and segmental mobility of poly(N-isopropylacrylamide) chains in D2O. J Polym Sci B Polym Phys 49:749–755. CrossRefGoogle Scholar
  34. 34.
    Lazzari M, Liu GJ, Lecommandoux S (2006) Block copolymers in nanoscience. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  35. 35.
    Malmsten M (2002) Surfactants and polymers in drug delivery. Marcel Dekker, New YorkCrossRefGoogle Scholar
  36. 36.
    Vasilieva YA, Thomas DB, Scales CW, McCormick CL (2004) Direct controlled polymerization of a cationic methacrylamido monomer in aqueous media via the RAFT process. Macromolecules 37:2728–2737. CrossRefGoogle Scholar
  37. 37.
    McCormick CL, Lowe AB (2004) Aqueous RAFT polymerization: recent developments in synthesis of functional water-soluble (co)polymers with controlled structures. Acc Chem Res 37:312–325. CrossRefGoogle Scholar
  38. 38.
    Thomas DB, Convertine AJ, Myrick LJ, Scales CW, Smith AE, Lowe AB, Vasilieva YA, Ayres N, McCormick CL (2004) Kinetics and molecular weight control of the polymerization of acrylamide via RAFT. Macromolecules 37:8941–8950. CrossRefGoogle Scholar
  39. 39.
    Donovan MS, Sumerlin BS, Lowe AB, McCormick CL (2002) Controlled/“living” polymerization of sulfobetaine monomers directly in aqueous media via RAFT. Macromolecules 35:8663–8666. CrossRefGoogle Scholar
  40. 40.
    Thomas DB, Sumerlin BS, Lowe AB, McCormick CL (2003) Conditions for facile, controlled RAFT polymerization of acrylamide in water. Macromolecules 36:1436–1439. CrossRefGoogle Scholar
  41. 41.
    Ganachaud F, Monteiro MJ, Gilbert RG (2000) Molecular weight characterization of poly(N-isopropylacrylamide) prepared by living free-radical polymerization. Macromolecules 33:6738–6745. CrossRefGoogle Scholar
  42. 42.
    Yang HJ, Cole CA, Monji N, Hoffman AS (1990) Preparation of a thermally phase-separating copolymer, poly(N-isopropylacrylamide-co-N-acryloxysuccinimide), with a controlled number of active esters per polymer chain. J Polym Sci Part A Polym Chem 28:219–226. CrossRefGoogle Scholar
  43. 43.
    Ganachaud F, Monteiro MJ, Gilber RG, Dourges MA, Thang SH, Rizzardo E (2000) Molecular weight characterization of poly(N-isopropylacrylamide) prepared by living free-radical polymerization. Macromolecules 33:6738–6745. CrossRefGoogle Scholar
  44. 44.
    Moad G, Rizzardo E, Thang SH (2008) Radical addition–fragmentation chemistry in polymer synthesis. Polymer 49:1079–1131. CrossRefGoogle Scholar
  45. 45.
    Le TP, Moad G, Rizzardo E, Thang SH (1998) PCT Int Appl 9(801):478Google Scholar
  46. 46.
    Arotcaréna M, Heise B, Ishaya S, Laschewsky A (2002) Switching the Inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity. J Am Chem Soc 124:3787–3793. CrossRefGoogle Scholar
  47. 47.
    Patterson D (1969) Free volume and polymer solubility. A qualitative view. Macromolecules 2:672–677. CrossRefGoogle Scholar
  48. 48.
    Wang F, Saeki S, Yamaguchi T (1999) Absolute prediction of upper and lower critical solution temperatures in polymer/solvent systems based on corresponding state theory. Polymer 40:2779–2785. CrossRefGoogle Scholar
  49. 49.
    Liu Y, He JP, Xu JT, Fan DQ, Tang W, Yang YL (2005) Thermal decomposition of cumyl dithiobenzoate. Macromolecules 38:10332–10335. CrossRefGoogle Scholar
  50. 50.
    Pamies R, Zhu KZ, Nyström B (2009) Thermal response of low molecular weight poly-(N-isopropylacrylamide) polymers in aqueous solution. Polym Bull 62:487–502. CrossRefGoogle Scholar
  51. 51.
    Malcolm GN, Rowlinson JS (1957) The thermodynamic properties of aqueous solutions of polyethylene glycol, polypropylene glycol and dioxane. Trans Faraday Soc 53:921–931. CrossRefGoogle Scholar
  52. 52.
    Baulin VA, Halperin A (2002) Concentration dependence of the flory χ parameter within two-state models. Macromolecules 35:6432–6438. CrossRefGoogle Scholar
  53. 53.
    Matsuyama A, Tanaka F (1990) Theory of solvation-induced reentrant phase separation in polymer solutions. Phys Rev Lett 65:341–344. CrossRefGoogle Scholar
  54. 54.
    De Gennes PG (1991) A model for the tack of molten polymers. CR Acad Sci Paris Ser II 313:1415–1418Google Scholar
  55. 55.
    Painter PC, Berg LP, Veytsman B, Coleman MM (1997) Intramolecular screening in nondilute polymer solutions. Macromolecules 30:7529–7535. CrossRefGoogle Scholar
  56. 56.
    Kalyanasundaram K, Thomos JK (1997) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044. CrossRefGoogle Scholar
  57. 57.
    Wilhelm M, Zhao CL, Wang YC, Xu RL, Winnik MA (1991) Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 24:1033–1040. CrossRefGoogle Scholar
  58. 58.
    Turro NJ, Grätzel M, Braun A (1980) Photophysical and photochemical processes in micellar systems. Angew Chem Int Ed Eng 19:675–696. CrossRefGoogle Scholar
  59. 59.
    Tang WT, Hadziioannou G, Smith BA, Frank C (1988) Facile method for labelling polystyrene with various fluorescent dyes. Polymer 29:1313–1317. CrossRefGoogle Scholar
  60. 60.
    Major MD, Torkelson JM, Brearly AM (1990) Fluorescence energy transfer studies of styrene-isoprene diblock copolymer solutions. Macromolecules 23:1700–1710. CrossRefGoogle Scholar
  61. 61.
    Nagasaki Y, Okada T, Scholz C, Lijima M, Kato M, Kataoka K (1998) The reactive polymeric micelle based on an aldehyde-ended poly(ethylene glycol)/poly(lactide) block copolymer. Macromolecules 31:1473–1479. CrossRefGoogle Scholar
  62. 62.
    Astafieva I, Zhong XF, Eisenberg A (1993) Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 26:7339–7352. CrossRefGoogle Scholar
  63. 63.
    Itakura M, Inomata K, Nose T (2000) Aggregation behavior of poly(N,N-diethylacrylamide) in aqueous solution. Polymer 41:8681–8687. CrossRefGoogle Scholar
  64. 64.
    Freitag R, Baltes T, Eggert M (1994) A comparison of thermoreactive water-soluble poly-N,N-diethylacrylamide prepared by anionic and by group transfer polymerization. J Polym Sci Part A Polym Chem 32:3019–3030. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.China University of Petroleum-Beijing at KaramayKaramayPeople’s Republic of China
  2. 2.CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations