Advertisement

Polymer Bulletin

, Volume 76, Issue 2, pp 797–812 | Cite as

Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma: alignment, antibacterial activity, and biocompatibility

  • Nehir Arik
  • Alper Inan
  • Fatma Ibis
  • Emine A. Demirci
  • Ozan Karaman
  • Utku K. Ercan
  • Nesrin HorzumEmail author
Original Paper
  • 173 Downloads

Abstract

The ongoing search for better antibacterial wound care dressings has led to the design and fabrication of advanced functional nanomaterials. Taking advantage of electrospinning and cold atmospheric plasma (CAP), free-standing nanofibrous scaffolds are promising for use in novel biomedical applications. Random and aligned polyvinyl alcohol (PVA)/polyacrylic acid (PAA) nanofiber scaffolds are fabricated by electrospinning and treated with CAP. In this study, we investigate the effects of CAP treatment on alignment, hydrophilicity, antibacterial activity, and biocompatibility in determining the surface properties of the nanofibrous scaffolds. The results of vibrational polarization spectroscopy analysis indicate that CAP treatment changes the degree of alignment of the nanofibers. Furthermore, both random and aligned CAP-treated nanofibrous scaffolds show significant antibacterial activity against the E. coli strain. The results of an in vitro scratch assay reveal that CAP treatment of PVA/PAA nanofibers has no toxic effect.

Keywords

Alignment Cold atmospheric plasma Electrospinning Nanofibrous scaffold 

Notes

Acknowledgements

The authors thank the Centre for Materials Research of Izmir Katip Celebi University (IKCU). Partial financial support for this research was provided by the IKCU Scientific Research Project 2014-1-MÜH-15.

Supplementary material

289_2018_2409_MOESM1_ESM.docx (658 kb)
Supplementary material 1 (DOCX 658 kb)

References

  1. 1.
    Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40.  https://doi.org/10.1016/s1369-7021(04)00233-0 CrossRefGoogle Scholar
  2. 2.
    Bazaka K, Jacob MV, Chrzanowski W, Ostrikov K (2015) Anti-bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification. RSC Adv 5(60):48739–48759.  https://doi.org/10.1039/c4ra17244b CrossRefGoogle Scholar
  3. 3.
    Ulbin-Figlewicz N, Brychcy E, Jarmoluk A (2015) Effect of low-pressure cold plasma on surface microflora of meat and quality attributes. J Food Sci Technol 52(2):1228–1232.  https://doi.org/10.1007/s13197-013-1108-6 CrossRefGoogle Scholar
  4. 4.
    Padil VVT, Nguyen NHA, Rozek Z, Sevcu A, Cernik M (2015) Synthesis, fabrication and antibacterial properties of a plasma modified electrospun membrane consisting of gum kondagogu, dodecenyl succinic anhydride and poly(vinyl alcohol). Surf Coat Technol 271:32–38.  https://doi.org/10.1016/j.surfcoat.2015.01.035 CrossRefGoogle Scholar
  5. 5.
    Shi QA, Vitchuli N, Nowak J, Lin Z, Guo BK, McCord M, Bourham M, Zhang XW (2011) Atmospheric plasma treatment of pre-electrospinning polymer solution: a feasible method to improve electrospinnability. J Polym Sci Part B Polym Phys 49(2):115–122.  https://doi.org/10.1002/polb.22157 CrossRefGoogle Scholar
  6. 6.
    Nawalakhe R, Shi Q, Vitchuli N, Bourham MA, Zhang XW, McCord MG (2015) Plasma-assisted preparation of high-performance chitosan nanofibers/gauze composite bandages. Int J Polym Mater Polym Biomater 64(14):709–717.  https://doi.org/10.1080/00914037.2014.1002098 CrossRefGoogle Scholar
  7. 7.
    Nawalakhe R, Shi Q, Vitchuli N, Noar J, Caldwell JM, Breidt F, Bourham MA, Zhang X, McCord MG (2013) Novel atmospheric plasma enhanced chitosan nanofiber/gauze composite wound dressings. J Appl Polym Sci 129(2):916–923.  https://doi.org/10.1002/app.38804 CrossRefGoogle Scholar
  8. 8.
    Silva SS, Luna SM, Gomes ME, Benesch J, Pashkuleva I, Mano JF, Reis RL (2008) Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies. Macromol Biosci 8(6):568–576.  https://doi.org/10.1002/mabi.200700264 CrossRefGoogle Scholar
  9. 9.
    Theapsak S, Watthanaphanit A, Rujiravanit R (2012) Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment. ACS Appl Mater Interfaces 4(5):2474–2482.  https://doi.org/10.1021/am300168a CrossRefGoogle Scholar
  10. 10.
    Yorsaeng S, Pornsunthorntawee O, Rujiravanit R (2012) Preparation and characterization of chitosan-coated DBD plasma-treated natural rubber latex medical surgical gloves with antibacterial activities. Plasma Chem Plasma Process 32(6):1275–1292.  https://doi.org/10.1007/s11090-012-9405-9 CrossRefGoogle Scholar
  11. 11.
    Nhi TT, Khon HC, Hoai NTT, Bao BC, Quyen TN, Toi VV, Hiep NT (2016) Fabrication of electrospun polycaprolactone coated with chitosan-silver nanoparticles membranes for wound dressing applications. J Mater Sci Mater Med 27(10):156.  https://doi.org/10.1007/s10856-016-5768-4 CrossRefGoogle Scholar
  12. 12.
    Siri S, Wadbua P, Amornkitbamrung V, Kampa N, Maensiri S (2010) Surface modification of electrospun PCL scaffolds by plasma treatment and addition of adhesive protein to promote fibroblast cell adhesion. Mater Sci Technol 26(11):1292–1297.  https://doi.org/10.1179/026708310x12798718274070 CrossRefGoogle Scholar
  13. 13.
    Suwantong O (2016) Biomedical applications of electrospun polycaprolactone fiber mats. Polym Adv Technol 27(10):1264–1273.  https://doi.org/10.1002/pat.3876 CrossRefGoogle Scholar
  14. 14.
    Jacobs T, Declercq H, De Geyter N, Cornelissen R, Dubruel P, Leys C, Beaurain A, Payen E, Morent R (2013) Plasma surface modification of polylactic acid to promote interaction with fibroblasts. J Mater Sci Mater Med 24(2):469–478.  https://doi.org/10.1007/s10856-012-4807-z CrossRefGoogle Scholar
  15. 15.
    Zhu W, Castro NJ, Cheng XQ, Keidar M, Zhang LG (2015) Cold atmospheric plasma modified electrospun scaffolds with embedded microspheres for improved cartilage regeneration. PLoS ONE 10(7):e0134729.  https://doi.org/10.1371/journal.pone.0134729 CrossRefGoogle Scholar
  16. 16.
    Padil VVT, Cernik M (2015) Poly(vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions. J Hazard Mater 287:102–110.  https://doi.org/10.1016/j.jhazmat.2014.12.042 CrossRefGoogle Scholar
  17. 17.
    Chen JP, Chiang Y (2010) Bioactive electrospun silver nanoparticles-containing polyurethane nanofibers as wound dressings. J Nanosci Nanotechnol 10(11):7560–7564.  https://doi.org/10.1166/jnn.2010.2829 CrossRefGoogle Scholar
  18. 18.
    Chen HN, Xing XD, Tan HP, Jia Y, Zhou TL, Chen Y, Ling ZH, Hu XH (2017) Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater Sci Eng C Mater Biol Appl 70:287–295.  https://doi.org/10.1016/j.msec.2016.08.086 CrossRefGoogle Scholar
  19. 19.
    Poor AE, Ercan UK, Yost A, Brooks AD, Joshi SG (2014) Control of multi-drug-resistant pathogens with non-thermal-plasma-treated alginate wound dressing. Surg infect 15(3):233–243.  https://doi.org/10.1089/sur.2013.050 CrossRefGoogle Scholar
  20. 20.
    Furusho H, Kitano K, Hamaguchi S, Nagasaki Y (2009) Preparation of stable water-dispersible PEGylated gold nanoparticles assisted by nonequilibrium atmospheric-pressure plasma jets. Chem Mater 21(15):3526–3535.  https://doi.org/10.1021/cm803290b CrossRefGoogle Scholar
  21. 21.
    Dorraki N, Safa NN, Jahanfar M, Ghomi H, Ranaei-Siadat SO (2015) Surface modification of chitosan/PEO nanofibers by air dielectric barrier discharge plasma for acetylcholinesterase immobilization. Appl Surf Sci 349:940–947.  https://doi.org/10.1016/j.apsusc.2015.03.118 CrossRefGoogle Scholar
  22. 22.
    Liu W, Zhan JC, Su Y, Wu T, Wu CC, Ramakrishna S, Mo XM, Al-Deyab SS, El-Newehy M (2014) Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology. Colloids Surf B Biointerfaces 113:101–106.  https://doi.org/10.1016/j.colsurfb.2013.08.031 CrossRefGoogle Scholar
  23. 23.
    Horzum N, Boyaci E, Eroglu AE, Shahwan T, Demir MM (2010) Sorption efficiency of chitosan nanofibers toward metal ions at low concentrations. Biomacromol 11(12):3301–3308.  https://doi.org/10.1021/bm100755x CrossRefGoogle Scholar
  24. 24.
    Horzum N, Mari M, Wagner M, Fortunato G, Popa AM, Demir MM, Landfester K, Crespy D, Munoz-Espi R (2015) Controlled surface mineralization of metal oxides on nanofibers. RSC Adv 5(47):37340–37345.  https://doi.org/10.1039/c5ra02140e CrossRefGoogle Scholar
  25. 25.
    Dolci LS, Quiroga SD, Gherardi M, Laurita R, Liguori A, Sanibondi P, Fiorani A, Calza L, Colombo V, Focarete ML (2014) Carboxyl surface functionalization of poly(l-lactic acid) electrospun nanofibers through atmospheric non-thermal plasma affects fibroblast morphology. Plasma Process Polym 11(3):203–213.  https://doi.org/10.1002/ppap.201300104 CrossRefGoogle Scholar
  26. 26.
    Park SJ, Rhee KY, Jin FL (2015) Improvement of hydrophilic properties of electrospun polyamide-imide fibrous mats by atmospheric-pressure plasma treatment. J Phys Chem Solids 78:53–58.  https://doi.org/10.1016/j.jpcs.2014.11.001 CrossRefGoogle Scholar
  27. 27.
    Ozkan O, Sasmazel HT (2016) Effects of nozzle type atmospheric dry air plasma on L929 fibroblast cells hybrid poly(ε-caprolactone)/chitosan/poly(ε-caprolactone) scaffolds interactions. J Biosci Bioeng 122(2):232–239.  https://doi.org/10.1016/j.jbiosc.2016.01.004 CrossRefGoogle Scholar
  28. 28.
    Colombo V, Fabiani D, Focarete ML, Gherardi M, Gualandi C, Laurita R, Zaccaria M (2014) Atmospheric pressure non-equilibrium plasma treatment to improve the electrospinnability of poly(L-lactic acid) polymeric solution. Plasma Process Polym 11(3):247–255.  https://doi.org/10.1002/ppap.201300141 CrossRefGoogle Scholar
  29. 29.
    Kumeta K, Nagashima I, Matsui S, Mizoguchi K (2003) Crosslinking reaction of poly(vinyl alcohol) with poly(acrylic acid) (PAA) by heat treatment: effect of neutralization of PAA. J Appl Polym Sci 90(9):2420–2427.  https://doi.org/10.1002/app.12910 CrossRefGoogle Scholar
  30. 30.
    Ercan UK, Wang H, Ji HF, Fridman G, Brooks AD, Joshi SG (2013) Nonequilibrium plasma-activated antimicrobial solutions are broad-spectrum and retain their efficacies for extended period of time. Plasma Process Polym 10(6):544–555.  https://doi.org/10.1002/ppap.201200104 CrossRefGoogle Scholar
  31. 31.
    Xiao SL, Shen MW, Guo R, Huang QG, Wang SY, Shi XY (2010) Fabrication of multiwalled carbon nanotube-reinforced electrospun polymer nanofibers containing zero-valent iron nanoparticles for environmental applications. J Mater Chem 20(27):5700–5708.  https://doi.org/10.1039/c0jm00368a CrossRefGoogle Scholar
  32. 32.
    Audic JL, Poncin-Epaillard F, Reyx D, Brosse JC (2001) Cold plasma surface modification of conventionally and nonconventionally plasticized poly(vinyl chloride)-based flexible films: global and specific migration of additives into isooctane. J Appl Polym Sci 79(8):1384–1393. https://doi.org/10.1002/1097-4628(20010222)79:8<1384::aid-app50>3.0.co;2-hCrossRefGoogle Scholar
  33. 33.
    Verdonck P, Caliope PB, Hernandez ED, da Silva ANR (2006) Plasma etching of electrospun polymeric nanofibres. Thin Solid Films 515(2):831–834.  https://doi.org/10.1016/j.tsf.2005.12.196 CrossRefGoogle Scholar
  34. 34.
    Demir MM, Ozen B, Ozcelik S (2009) Formation of pseudoisocyanine J-aggregates in poly(vinyl alcohol) fibers by electrospinning. J Phys Chem B 113(34):11568–11573.  https://doi.org/10.1021/jp902380n CrossRefGoogle Scholar
  35. 35.
    Nobeshima T, Sakai H, Ishii Y, Uemura S, Yoshida M (2016) Polarized FT-IR study of uniaxially aligned electrospun poly(DL-lactic acid) fiber films. J Photopolym Sci Technol 29(2):353–356.  https://doi.org/10.2494/photopolymer.29.353 CrossRefGoogle Scholar
  36. 36.
    Ramazani S, Karimi M (2014) Investigating the influence of temperature on electrospinning of polycaprolactone solutions. E-Polymers 14(5):323–333.  https://doi.org/10.1515/epoly-2014-0110 CrossRefGoogle Scholar
  37. 37.
    Wang M, Cheng X, Zhu W, Holmes B, Keidar M, Zhang LG (2014) Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Tissue Eng Part A 20(5–6):1060–1071.  https://doi.org/10.1089/ten.TEA.2013.0235 CrossRefGoogle Scholar
  38. 38.
    Zhu W, Castro NJ, Cheng X, Keidar M, Zhang LG (2015) Cold atmospheric plasma modified electrospun scaffolds with embedded microspheres for improved cartilage regeneration. PLoS ONE 10(7):e0134729.  https://doi.org/10.1371/journal.pone.0134729 CrossRefGoogle Scholar
  39. 39.
    Moreau M, Orange N, Feuilloley M (2008) Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv 26(6):610–617.  https://doi.org/10.1016/j.biotechadv.2008.08.001 CrossRefGoogle Scholar
  40. 40.
    Traylor MJ, Pavlovich MJ, Karim S, Hait P, Sakiyama Y, Clark DS, Graves DB (2011) Long-term antibacterial efficacy of air plasma-activated water. J Phys D Appl Phys 44(47):472001.  https://doi.org/10.1088/0022-3727/44/47/472001 CrossRefGoogle Scholar
  41. 41.
    Ercan UK, Smith J, Ji H-F, Brooks AD, Joshi SG (2016) Chemical changes in nonthermal plasma-treated N-acetylcysteine (NAC) solution and their contribution to bacterial inactivation. Sci Rep 6:20365.  https://doi.org/10.1038/srep20365 CrossRefGoogle Scholar
  42. 42.
    Ryu Y-H, Kim Y-H, Lee J-Y, Shim G-B, Uhm H-S, Park G, Choi EH (2013) Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma. PLoS ONE 8(6):e66231.  https://doi.org/10.1371/journal.pone.0066231 CrossRefGoogle Scholar
  43. 43.
    de Avila ED, Lima BP, Sekiya T, Torii Y, Ogawa T, Shi W, Lux R (2015) Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material. Biomaterials 67:84–92.  https://doi.org/10.1016/j.biomaterials.2015.07.030 CrossRefGoogle Scholar
  44. 44.
    Ibis F, Oflaz H, Ercan UK (2016) Biofilm inactivation and prevention on common implant material surfaces by nonthermal DBD plasma treatment. Plasma Med 6(1):33–45.  https://doi.org/10.1615/PlasmaMed.2016015846 CrossRefGoogle Scholar
  45. 45.
    Monetta T, Scala A, Malmo C, Bellucci F (2011) Antibacterial activity of cold plasma-treated titanium alloy. Plasma Med 1(3–4):205–214.  https://doi.org/10.1615/PlasmaMed.v1.i3-4.30 CrossRefGoogle Scholar
  46. 46.
    Liguori A, Cochis A, Stancampiano A, Laurita R, Azzimonti B, Sorrentino R, Varoni EM, Petri M, Colombo V, Gherardi M, Rimondini L (2017) Cold atmospheric plasma treatment affects early bacterial adhesion and decontamination of soft reline palatal obturators. Clin Plasma Med 7:36–45.  https://doi.org/10.1016/j.cpme.2017.08.001 CrossRefGoogle Scholar
  47. 47.
    Dolci LS, Quiroga SD, Gherardi M, Laurita R, Liguori A, Sanibondi P, Fiorani A, Calzà L, Colombo V, Focarete ML (2014) Carboxyl surface functionalization of poly(l-lactic acid) electrospun nanofibers through atmospheric non-thermal plasma affects fibroblast morphology. Plasma Process Polym 11(3):203–213.  https://doi.org/10.1002/ppap.201300104 CrossRefGoogle Scholar
  48. 48.
    Atyabi SM, Sharifi F, Irani S, Zandi M, Mivehchi H, Nagheh Z (2016) Cell attachment and viability study of PCL nano-fiber modified by cold atmospheric plasma. Cell Biochem Biophys 74(2):181–190.  https://doi.org/10.1007/s12013-015-0718-1 CrossRefGoogle Scholar
  49. 49.
    Kasálková N, Makajová Z, Pařízek M, Slepička P, Kolářová K, Bačáková L, Hnatowicz V, Švorčík V (2010) Cell adhesion and proliferation on plasma-treated and poly(ethylene glycol)-grafted polyethylene. J Adhes Sci Technol 24(4):743–754.  https://doi.org/10.1163/016942409X12579497420762 CrossRefGoogle Scholar
  50. 50.
    Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY (2006) An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomed Mater Res Part B Appl Biomater 78(2):283–290.  https://doi.org/10.1002/jbm.b.30484 CrossRefGoogle Scholar
  51. 51.
    Moffa M, Polini A, Sciancalepore AG, Persano L, Mele E, Passione LG, Potente G, Pisignano D (2013) Microvascular endothelial cell spreading and proliferation on nanofibrous scaffolds by polymer blends with enhanced wettability. Soft Matter 9(23):5529–5539.  https://doi.org/10.1039/C3SM50328C CrossRefGoogle Scholar
  52. 52.
    Karaman O, Kelebek S, Demirci EA, İbiş F, Ulu M, Ercan UK (2018) Synergistic effect of cold plasma treatment and RGD peptide coating on cell proliferation over titanium surfaces. Tissue Eng Regen Med 15(1):13–24.  https://doi.org/10.1007/s13770-017-0087-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biocomposite Engineering Graduate Programİzmir Katip Celebi UniversityİzmirTurkey
  2. 2.Department of Chemistryİzmir Institute of TechnologyİzmirTurkey
  3. 3.Biomedical Technologies Graduate Programİzmir Katip Celebi UniversityİzmirTurkey
  4. 4.Department of Biomedical Engineeringİzmir Katip Celebi UniversityİzmirTurkey
  5. 5.Department of Engineering Sciencesİzmir Katip Celebi UniversityİzmirTurkey

Personalised recommendations