Polymer Bulletin

, Volume 76, Issue 2, pp 595–613 | Cite as

Photophysical properties of new fluorene-based conjugated polymers containing polyphenylene-substituted dendronized core

  • Rupashri K. Kadu
  • Pramod B. Thakur
  • Vishwanath R. PatilEmail author
Original Paper


Rapid synthesis of new fluorene-based conjugated polymers P1P8 is reported by polymerization of polyphenylene-substituted dendronized monomer 2,7-dibromo-9,9-di(4-(2,3,4,5-tetraphenylphenyl)-benzyl) fluorene (M1) and 2,7-dibromo-9,9-di(4-pentaphenylphenyl)-benzyl) fluorene (M2) with different 9,9-disubstituted 2,7-dibromo fluorene monomers (M3M6) under microwave irradiation. The structure of these synthesized polymers P1P8 was established by FTIR, 1H NMR, 13C NMR, and gel permeation chromatography techniques. The photophysical studies of these polymers P1P8 shows good results desirable for light-emitting material. These polymers exhibited UV–Vis absorption peak with the maxima in 344–386 nm in THF solution. Similarly, the fluorescence spectra of these polymers showed PL maxima in 414–418 nm with shoulder peak in 437–440 nm. From this study, the stoke shifts was observed in 30–73 nm, and quantum efficiency was found in 0.41–0.57. Polymers had thermal stability up to 200 °C; however, for dihexyl-substituted dendronized polymer, P1 and P5 showed thermal decomposition at 490 and 430 °C, respectively. In addition to this, polymers P1P8 were also analyzed by electrochemical study in which the onset of the irreversible oxidation wave of dendronized polymers P1P8 is recorded in the range of 0.88–0.99 V. The results of these various studies showed that the synthesized polymers P1P8 can be promising materials for blue-light-emitting diodes because of their high photoluminescence (PL), quantum efficiencies, and thermal stability.


Fluorene Polyphenylene Dendrimers Microwave chemistry Polymerization 



The author (RKK) would like to acknowledge the University of Mumbai, for providing the financial support under the UGC scheme.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

289_2018_2401_MOESM1_ESM.docx (3.1 mb)
Electronic Supplementary information can be found in the online version of this article (DOCX 3166 kb)


  1. 1.
    Hains AW, Liang Z, Woodhouse MA, Gregg BA (2010) Molecular semiconductors in organic photovoltaic cells. Chem Rev 110:6689–6735. CrossRefGoogle Scholar
  2. 2.
    Jiang L, Dong H, Hu W (2010) Organic single crystal field-effect transistors: advances and perspectives. J Mater Chem 20:4994–5007. CrossRefGoogle Scholar
  3. 3.
    Grimsdale AC, Chan KL, Martin RE (2009) Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev 109:897–1091. CrossRefGoogle Scholar
  4. 4.
    Cho HJ, Jung BJ, Cho NS (2003) Synthesis and characterization of thermally stable blue light-emitting polyfluorenes containing siloxane bridges. Macromolecules 2003; 36: 6704–6710. Macromolecules 36:6704–6710. CrossRefGoogle Scholar
  5. 5.
    Beaujuge PM, Reynolds JR (2010) Color control in pi-conjugated organic polymers for use in electrochromic devices. Chem Rev 110:268–320. CrossRefGoogle Scholar
  6. 6.
    Klauk H (2010) Organic thin-film transistors. Chem Soc Rev 39:2643–2666. CrossRefGoogle Scholar
  7. 7.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541. CrossRefGoogle Scholar
  8. 8.
    Tomalia DA, Frechet JMJ (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci, Part A: Polym Chem 40:2719–2728. CrossRefGoogle Scholar
  9. 9.
    Hawker CJ, Frechet JM (1992) The synthesis and polymerization of a hyperbranched polyether macromonomer. Polymer 33:1507–1511. CrossRefGoogle Scholar
  10. 10.
    Percec V, Heck J, Tomazos D, Falkenberg F, Blackwell H, Ungar G (1993) Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(p-dodecyloxybenzyloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar mesophase. J Chem Soc 1:2799–2811. Google Scholar
  11. 11.
    Peng Q, Huang Y, Cao Y (2004) Synthesis and characterization of new red-emitting polyfluorene derivatives containing electron-deficient 2-pyran-4-ylidene − malononitrile moieties. Macromolecules 37:260–266. CrossRefGoogle Scholar
  12. 12.
    Ranger M, Rondeau D, Leclerc M (1997) New well-defined poly(2,7-fluorene) derivatives: photoluminescence and base doping. Macromolecules 30:7686–7691. CrossRefGoogle Scholar
  13. 13.
    Grisorio R, Suranna GP, Mastrorilli P (2007) Insight into the role of oxidation in the thermally induced green band in fluorene-based systems. Adv Funct Mater 17:538–548. CrossRefGoogle Scholar
  14. 14.
    Sandee AJ, Williams CK, Evans NR, Davies JE, Boothby CE, Kohler A, Friend RH, Holmes AB (2004) Solution-processible conjugated electrophosphorescent polymers. J Am Chem Soc 126:7041–7048. CrossRefGoogle Scholar
  15. 15.
    Pinner DJ, Friend RH, Tessler N (1999) Transient electroluminescence of polymer light emitting diodes using electrical pulses. J Appl Phys 86:5116–5130. CrossRefGoogle Scholar
  16. 16.
    Charas A, Morgado J, Martinho JMG, Alcacer LS, Lim F, Friend RH, Cacialli F (2003) Synthesis and luminescence properties of three novel polyfluorene copolymers. Polymer 44:1843–1850. CrossRefGoogle Scholar
  17. 17.
    Bezgin B, Cihaner A, Onal AM (2008) Electrochemical polymerization of 9-fluorenecarboxylic acid and its electrochromic device application. Thin Solid Films 516:7329–7334. CrossRefGoogle Scholar
  18. 18.
    Tsuie B, Reddinger JL, Sotzing GA, Soloducho J, Katritzky AR, Reynolds JR (1999) Electroactive and luminescent polymers: new fluorene-heterocycle-based hybrids. J Mater Chem 9:2189–2200. CrossRefGoogle Scholar
  19. 19.
    Çarbas BB, Kivrak A, Onal AM (2012) A new processable electrochromic polymer based on an electron deficient fluorene derivative with a high coloration efficiency. Electrochim Acta 58:223–234. CrossRefGoogle Scholar
  20. 20.
    Larmat F, Reynolds JR, Reinhardt BA, Brott LL, Clarson SI (1997) Comparative reactivity of thiophene and 3,4-(ethylenedioxy)thiophene as terminal electropolymerizable units in bis-heterocycle arylenes. J Polym Sci Part A Polym Chem 35:3627–3636.<3627::aid-pola2>;2-pGoogle Scholar
  21. 21.
    Nie G, Yang H, Chen J, Bai Z (2012) A novel high-quality electrochromic material from 3,4-ethylenedioxythiophene bis-substituted fluorine. Org Electron 13:2167–2176. CrossRefGoogle Scholar
  22. 22.
    Ibrahimova V, Kocak ME, Onal AM, Tuncel D (2013) Optical and electronic properties of fluorene-based copolymers and their sensory applications. J Polym Sci, Part A: Polym Chem 51:815–823. CrossRefGoogle Scholar
  23. 23.
    Keivanidis PE, Howard IA, Friend RH (2008) Intermolecular interactions of perylene diimides in photovoltaic blends of fluorene copolymers: disorder effects on photophysical properties, film morphology and device efficiency. Adv Funct Mater 18:3189–3202. CrossRefGoogle Scholar
  24. 24.
    Klaerner G, Davey MH, Chen WD, Scott JC, Miller RD (1998) Colorfast blue-light-emitting random copolymers derived from di-n-hexylfluorene and anthracene. Adv Mater 10:993–997.<993::aid-adma993>;2-2Google Scholar
  25. 25.
    Klaerner G, Lee JI, Davey MH, Miller RD (1999) Exciton migration and trapping in copolymers based on dialkylfluorenes. Adv Mater 11:115–119.<115::aid-adma115>;2-nGoogle Scholar
  26. 26.
    Klarner G, Lee JI, Lee VY, Chan E, Chen JP, Nelson A, Markiewicz D, Siemens R, Scott JC, Miller RD (1999) Cross-linkable polymers based on dialkylfluorenes. Chem Mater 11:1800–1805. CrossRefGoogle Scholar
  27. 27.
    Liu J, Tu G, Zhou Q, Cheng Y, Geng Y, Wang L, Ma D, Jing X, Wang FJ (2006) Highly efficient green light emitting polyfluorene incorporated with 4-diphenylamino-1,8-naphthalimide as green dopant. J Mater Chem 16:1431–1438. CrossRefGoogle Scholar
  28. 28.
    Evans NR, Devi LS, Mak CSK, Watkins SE, Pascu SI, Kohler A, Friend RH, Williams CK, Holmes AB (2006) Triplet energy back transfer in conjugated polymers with pendant phosphorescent iridium complexes. J Am Chem Soc 128:6647–6656. CrossRefGoogle Scholar
  29. 29.
    Setayesh S, Grimsdale AC, Weil T, Enkelmann V, Mullen K, Meghdadi F, List EJ, Leising GJ (2001) Polyfluorenes with polyphenylene dendron side chains: toward non-aggregating, light-emitting polymers. J Am Chem Soc 123:946–953. CrossRefGoogle Scholar
  30. 30.
    Leclerc M (2001) Polyfluorenes: twenty years of progress. J Polym Sci, Part A: Polym Chem 39:2867–2873. CrossRefGoogle Scholar
  31. 31.
    Neher D, (2001) Polyfluorene homopolymers: conjugated liquid-crystalline polymers for bright blue emission and polarized electroluminescence. Macromol Rapid Commun 22:1365–1385.<1365::aid-marc1365>;2-bGoogle Scholar
  32. 32.
    Woo EP, Shiang WR, Inbasekaran M, Roof GR, Bernius MT, Weishi W (2005) Fluorene-containing polymers and compounds useful in the preparation thereof, US Patent, US6900285Google Scholar
  33. 33.
    Williams JAG (2007) Organic light-emitting devices: synthesis, properties and applications. Platin Metals Rev 51:85–86. CrossRefGoogle Scholar
  34. 34.
    Newkome GR, Moorefield CN, Vögtle F (2001) Dendrimers and dendrons: concepts, syntheses, application. Wiley, New YorkCrossRefGoogle Scholar
  35. 35.
    Kenneth RC (2002) Nickel(0)-mediated coupling polymerizations via microwave-assisted chemistry. Macromolecules 35:6757–6759. CrossRefGoogle Scholar
  36. 36.
    Kadu RK, Patil VR (2015) new strategy for synthesis of polyphenylene substituted dendronized monomers containing fluorene unit and the study of their properties. Polycycl Aromat Compd. Google Scholar
  37. 37.
    Saikia G, Iyer PK (2010) Facile C–H alkylation in water: enabling defect-free materials for optoelectronic devices. J Org Chem 75:2714–2717. CrossRefGoogle Scholar
  38. 38.
    Hoz A, Ortiz AD, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164–178. CrossRefGoogle Scholar
  39. 39.
    Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284. CrossRefGoogle Scholar
  40. 40.
    Lidstrom P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis—a review. Tetrahedron 57:9225–9283. CrossRefGoogle Scholar
  41. 41.
    Nuchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis—a critical technology overview. Green Chem 6:128–141. CrossRefGoogle Scholar
  42. 42.
    Shinpei MY, Susumu T, Junichi S, Kenji M, Shunzo S, Kenji T (2009) Microwave-assisted preparation of poly(fluorene)s by Ni-catalyzed polymerization. Polym J 4:327–331. Google Scholar
  43. 43.
    Matthias B, Luisa D, Bozano J, Campbell S, Kenneth RC (2005) Design and synthesis of new polymeric materials for organic nonvolatile electrical bistable storage devices: poly(biphenylmethylene)s. Macromolecules 38:4147–4156. CrossRefGoogle Scholar
  44. 44.
    Yoan CS, Joseph JP, Christine M, Kenneth RC, Bryan CE (2009) Synthesis of polyfluorenes with pendant silylcarboranes. Macromolecules 42:512–516. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rupashri K. Kadu
    • 1
  • Pramod B. Thakur
    • 2
  • Vishwanath R. Patil
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of MumbaiSantacruz (E), MumbaiIndia
  2. 2.Department of Chemistry, Rayat Shikshan Sanstha’sMahatma Phule Arts, Science and Commerce CollegePanvel, District-RaigadIndia

Personalised recommendations