Skip to main content
Log in

Photophysical properties of new fluorene-based conjugated polymers containing polyphenylene-substituted dendronized core

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Rapid synthesis of new fluorene-based conjugated polymers P1P8 is reported by polymerization of polyphenylene-substituted dendronized monomer 2,7-dibromo-9,9-di(4-(2,3,4,5-tetraphenylphenyl)-benzyl) fluorene (M1) and 2,7-dibromo-9,9-di(4-pentaphenylphenyl)-benzyl) fluorene (M2) with different 9,9-disubstituted 2,7-dibromo fluorene monomers (M3M6) under microwave irradiation. The structure of these synthesized polymers P1P8 was established by FTIR, 1H NMR, 13C NMR, and gel permeation chromatography techniques. The photophysical studies of these polymers P1P8 shows good results desirable for light-emitting material. These polymers exhibited UV–Vis absorption peak with the maxima in 344–386 nm in THF solution. Similarly, the fluorescence spectra of these polymers showed PL maxima in 414–418 nm with shoulder peak in 437–440 nm. From this study, the stoke shifts was observed in 30–73 nm, and quantum efficiency was found in 0.41–0.57. Polymers had thermal stability up to 200 °C; however, for dihexyl-substituted dendronized polymer, P1 and P5 showed thermal decomposition at 490 and 430 °C, respectively. In addition to this, polymers P1P8 were also analyzed by electrochemical study in which the onset of the irreversible oxidation wave of dendronized polymers P1P8 is recorded in the range of 0.88–0.99 V. The results of these various studies showed that the synthesized polymers P1P8 can be promising materials for blue-light-emitting diodes because of their high photoluminescence (PL), quantum efficiencies, and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hains AW, Liang Z, Woodhouse MA, Gregg BA (2010) Molecular semiconductors in organic photovoltaic cells. Chem Rev 110:6689–6735. https://doi.org/10.1021/cr9002984

    Article  CAS  PubMed  Google Scholar 

  2. Jiang L, Dong H, Hu W (2010) Organic single crystal field-effect transistors: advances and perspectives. J Mater Chem 20:4994–5007. https://doi.org/10.1039/B925875B

    Article  CAS  Google Scholar 

  3. Grimsdale AC, Chan KL, Martin RE (2009) Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev 109:897–1091. https://doi.org/10.1021/cr000013v

    Article  CAS  PubMed  Google Scholar 

  4. Cho HJ, Jung BJ, Cho NS (2003) Synthesis and characterization of thermally stable blue light-emitting polyfluorenes containing siloxane bridges. Macromolecules 2003; 36: 6704–6710. Macromolecules 36:6704–6710. https://doi.org/10.1021/ma034622r

    Article  CAS  Google Scholar 

  5. Beaujuge PM, Reynolds JR (2010) Color control in pi-conjugated organic polymers for use in electrochromic devices. Chem Rev 110:268–320. https://doi.org/10.1021/cr900129a

    Article  CAS  PubMed  Google Scholar 

  6. Klauk H (2010) Organic thin-film transistors. Chem Soc Rev 39:2643–2666. https://doi.org/10.1039/B909902F

    Article  CAS  PubMed  Google Scholar 

  7. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541. https://doi.org/10.1038/347539a0

    Article  CAS  Google Scholar 

  8. Tomalia DA, Frechet JMJ (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci, Part A: Polym Chem 40:2719–2728. https://doi.org/10.1002/pola.10301

    Article  CAS  Google Scholar 

  9. Hawker CJ, Frechet JM (1992) The synthesis and polymerization of a hyperbranched polyether macromonomer. Polymer 33:1507–1511. https://doi.org/10.1016/0032-3861(92)90128-J

    Article  CAS  Google Scholar 

  10. Percec V, Heck J, Tomazos D, Falkenberg F, Blackwell H, Ungar G (1993) Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(p-dodecyloxybenzyloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar mesophase. J Chem Soc 1:2799–2811. https://doi.org/10.1039/P19930002799

    Article  Google Scholar 

  11. Peng Q, Huang Y, Cao Y (2004) Synthesis and characterization of new red-emitting polyfluorene derivatives containing electron-deficient 2-pyran-4-ylidene − malononitrile moieties. Macromolecules 37:260–266. https://doi.org/10.1021/ma0355397

    Article  CAS  Google Scholar 

  12. Ranger M, Rondeau D, Leclerc M (1997) New well-defined poly(2,7-fluorene) derivatives: photoluminescence and base doping. Macromolecules 30:7686–7691. https://doi.org/10.1021/ma970920a

    Article  CAS  Google Scholar 

  13. Grisorio R, Suranna GP, Mastrorilli P (2007) Insight into the role of oxidation in the thermally induced green band in fluorene-based systems. Adv Funct Mater 17:538–548. https://doi.org/10.1002/adfm.200600083

    Article  CAS  Google Scholar 

  14. Sandee AJ, Williams CK, Evans NR, Davies JE, Boothby CE, Kohler A, Friend RH, Holmes AB (2004) Solution-processible conjugated electrophosphorescent polymers. J Am Chem Soc 126:7041–7048. https://doi.org/10.1021/ja039445o

    Article  CAS  PubMed  Google Scholar 

  15. Pinner DJ, Friend RH, Tessler N (1999) Transient electroluminescence of polymer light emitting diodes using electrical pulses. J Appl Phys 86:5116–5130. https://doi.org/10.1063/1.371488

    Article  CAS  Google Scholar 

  16. Charas A, Morgado J, Martinho JMG, Alcacer LS, Lim F, Friend RH, Cacialli F (2003) Synthesis and luminescence properties of three novel polyfluorene copolymers. Polymer 44:1843–1850. https://doi.org/10.1016/S0032-3861(03)00028-4

    Article  CAS  Google Scholar 

  17. Bezgin B, Cihaner A, Onal AM (2008) Electrochemical polymerization of 9-fluorenecarboxylic acid and its electrochromic device application. Thin Solid Films 516:7329–7334. https://doi.org/10.1016/j.tsf.2008.02.003

    Article  CAS  Google Scholar 

  18. Tsuie B, Reddinger JL, Sotzing GA, Soloducho J, Katritzky AR, Reynolds JR (1999) Electroactive and luminescent polymers: new fluorene-heterocycle-based hybrids. J Mater Chem 9:2189–2200. https://doi.org/10.1039/A903374B

    Article  CAS  Google Scholar 

  19. Çarbas BB, Kivrak A, Onal AM (2012) A new processable electrochromic polymer based on an electron deficient fluorene derivative with a high coloration efficiency. Electrochim Acta 58:223–234. https://doi.org/10.1016/j.electacta.2011.09.037

    Article  CAS  Google Scholar 

  20. Larmat F, Reynolds JR, Reinhardt BA, Brott LL, Clarson SI (1997) Comparative reactivity of thiophene and 3,4-(ethylenedioxy)thiophene as terminal electropolymerizable units in bis-heterocycle arylenes. J Polym Sci Part A Polym Chem 35:3627–3636. https://doi.org/10.1002/(sici)1099-0518(199712)35:17<3627::aid-pola2>3.0.co;2-p

  21. Nie G, Yang H, Chen J, Bai Z (2012) A novel high-quality electrochromic material from 3,4-ethylenedioxythiophene bis-substituted fluorine. Org Electron 13:2167–2176. https://doi.org/10.1016/j.orgel.2012.05.055

    Article  CAS  Google Scholar 

  22. Ibrahimova V, Kocak ME, Onal AM, Tuncel D (2013) Optical and electronic properties of fluorene-based copolymers and their sensory applications. J Polym Sci, Part A: Polym Chem 51:815–823. https://doi.org/10.1002/pola.26454

    Article  CAS  Google Scholar 

  23. Keivanidis PE, Howard IA, Friend RH (2008) Intermolecular interactions of perylene diimides in photovoltaic blends of fluorene copolymers: disorder effects on photophysical properties, film morphology and device efficiency. Adv Funct Mater 18:3189–3202. https://doi.org/10.1002/adfm.200800356

    Article  CAS  Google Scholar 

  24. Klaerner G, Davey MH, Chen WD, Scott JC, Miller RD (1998) Colorfast blue-light-emitting random copolymers derived from di-n-hexylfluorene and anthracene. Adv Mater 10:993–997. https://doi.org/10.1002/(sici)1521-4095(199809)10:13<993::aid-adma993>3.0.co;2-2

  25. Klaerner G, Lee JI, Davey MH, Miller RD (1999) Exciton migration and trapping in copolymers based on dialkylfluorenes. Adv Mater 11:115–119. https://doi.org/10.1002/(sici)1521-4095(199902)11:2<115::aid-adma115>3.0.co;2-n

  26. Klarner G, Lee JI, Lee VY, Chan E, Chen JP, Nelson A, Markiewicz D, Siemens R, Scott JC, Miller RD (1999) Cross-linkable polymers based on dialkylfluorenes. Chem Mater 11:1800–1805. https://doi.org/10.1021/cm990027l

    Article  Google Scholar 

  27. Liu J, Tu G, Zhou Q, Cheng Y, Geng Y, Wang L, Ma D, Jing X, Wang FJ (2006) Highly efficient green light emitting polyfluorene incorporated with 4-diphenylamino-1,8-naphthalimide as green dopant. J Mater Chem 16:1431–1438. https://doi.org/10.1039/B514359D

    Article  CAS  Google Scholar 

  28. Evans NR, Devi LS, Mak CSK, Watkins SE, Pascu SI, Kohler A, Friend RH, Williams CK, Holmes AB (2006) Triplet energy back transfer in conjugated polymers with pendant phosphorescent iridium complexes. J Am Chem Soc 128:6647–6656. https://doi.org/10.1021/ja0584267

    Article  CAS  PubMed  Google Scholar 

  29. Setayesh S, Grimsdale AC, Weil T, Enkelmann V, Mullen K, Meghdadi F, List EJ, Leising GJ (2001) Polyfluorenes with polyphenylene dendron side chains: toward non-aggregating, light-emitting polymers. J Am Chem Soc 123:946–953. https://doi.org/10.1021/ja0031220

    Article  CAS  PubMed  Google Scholar 

  30. Leclerc M (2001) Polyfluorenes: twenty years of progress. J Polym Sci, Part A: Polym Chem 39:2867–2873. https://doi.org/10.1002/pola.1266

    Article  CAS  Google Scholar 

  31. Neher D, (2001) Polyfluorene homopolymers: conjugated liquid-crystalline polymers for bright blue emission and polarized electroluminescence. Macromol Rapid Commun 22:1365–1385. https://doi.org/10.1002/1521-3927(20011101)22:17<1365::aid-marc1365>3.0.co;2-b

  32. Woo EP, Shiang WR, Inbasekaran M, Roof GR, Bernius MT, Weishi W (2005) Fluorene-containing polymers and compounds useful in the preparation thereof, US Patent, US6900285

  33. Williams JAG (2007) Organic light-emitting devices: synthesis, properties and applications. Platin Metals Rev 51:85–86. https://doi.org/10.1595/147106707x192537

    Article  Google Scholar 

  34. Newkome GR, Moorefield CN, Vögtle F (2001) Dendrimers and dendrons: concepts, syntheses, application. Wiley, New York

    Book  Google Scholar 

  35. Kenneth RC (2002) Nickel(0)-mediated coupling polymerizations via microwave-assisted chemistry. Macromolecules 35:6757–6759. https://doi.org/10.1021/ma025515k

    Article  CAS  Google Scholar 

  36. Kadu RK, Patil VR (2015) new strategy for synthesis of polyphenylene substituted dendronized monomers containing fluorene unit and the study of their properties. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2015.1129974

    Article  Google Scholar 

  37. Saikia G, Iyer PK (2010) Facile C–H alkylation in water: enabling defect-free materials for optoelectronic devices. J Org Chem 75:2714–2717. https://doi.org/10.1021/jo100028d

    Article  CAS  PubMed  Google Scholar 

  38. Hoz A, Ortiz AD, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164–178. https://doi.org/10.1039/B411438H

    Article  PubMed  Google Scholar 

  39. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284. https://doi.org/10.1002/anie.200400655

    Article  CAS  Google Scholar 

  40. Lidstrom P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis—a review. Tetrahedron 57:9225–9283. https://doi.org/10.1016/S0040-4020(01)00906-1

    Article  CAS  Google Scholar 

  41. Nuchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis—a critical technology overview. Green Chem 6:128–141. https://doi.org/10.1039/B310502D

    Article  Google Scholar 

  42. Shinpei MY, Susumu T, Junichi S, Kenji M, Shunzo S, Kenji T (2009) Microwave-assisted preparation of poly(fluorene)s by Ni-catalyzed polymerization. Polym J 4:327–331. https://doi.org/10.1295/polymj.PJ2008330

    Article  CAS  Google Scholar 

  43. Matthias B, Luisa D, Bozano J, Campbell S, Kenneth RC (2005) Design and synthesis of new polymeric materials for organic nonvolatile electrical bistable storage devices: poly(biphenylmethylene)s. Macromolecules 38:4147–4156. https://doi.org/10.1021/ma049572k

    Article  CAS  Google Scholar 

  44. Yoan CS, Joseph JP, Christine M, Kenneth RC, Bryan CE (2009) Synthesis of polyfluorenes with pendant silylcarboranes. Macromolecules 42:512–516. https://doi.org/10.1021/ma8018816

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (RKK) would like to acknowledge the University of Mumbai, for providing the financial support under the UGC scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwanath R. Patil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadu, R.K., Thakur, P.B. & Patil, V.R. Photophysical properties of new fluorene-based conjugated polymers containing polyphenylene-substituted dendronized core. Polym. Bull. 76, 595–613 (2019). https://doi.org/10.1007/s00289-018-2401-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2401-3

Keywords

Navigation