Advertisement

Polymer Bulletin

, Volume 76, Issue 2, pp 615–626 | Cite as

GHz permittivity of carbon black and polyaniline with styrene–butadiene–styrene composites

  • C. P. L. RubingerEmail author
  • M. E. Leyva
Original Paper
  • 81 Downloads

Abstract

The present work was focused on microwave absorption and electrical properties of conducting carbon black-filled/styrene–butadiene–styrene and polyaniline-filled/styrene–butadiene–styrene prepared in a mechanical mixer. Composites containing 1.0, 4.0 and 10 wt% of carbon black were studied. Conducting composites of polyaniline doped with dodecylbenzenesulfonic acid containing 5.0, 15, 20 and 30 wt% of doped polyaniline were also investigated. Complex permittivity measurements were obtained using the small perturbation theory for room temperature measurements carried in two cavity resonators at 2.47 and 5.0 GHz. The cavity perturbation technique is based on the changes in the resonant frequency and quality factor of the cavity due to the presence of a sample inside the cavity. The influence of filling component and composition (wt%) on complex permittivity of the materials was evaluated. As expected, both the real and imaginary parts of the permittivity increased with conductive filler content. However, composites with carbon black as filler have increased responses when compared with doped polyaniline since it needs more wt% content to get similar results. The high value of absorption coefficient and low value of skin depth were obtained for SBS/CB 10 wt%. The high value of electromagnetic interference shielding effectiveness for SBS/CB 10 wt% suggests that this composite can be used as a promising shielding electromagnetic material.

Keywords

Resonant cavity Microwaves Complex permittivity Perturbation theory 

Notes

Acknowledgements

The authors thank FAPEMIG, CAPES and CNPq for partially funding this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Imai M, Akiyama K, Tanka T, Sano E (2010) Highly strong and conductive carbon nanotube/cellulose composite paper. Comp Sci Technol 70:1564CrossRefGoogle Scholar
  2. 2.
    Xiaodong C, Guiqin W, Yuping D, Shunhua L (2007) Microwave absorption: properties of barium titanate/epoxide resin composites. J Phys D Appl Phys 40:1827–1830CrossRefGoogle Scholar
  3. 3.
    Chen CS, Chen WR, Chen SC, Chien RD (2008) Optimum injection moulding processing condition on EMI shielding effectiveness of stainless steel fiber filled polycarbonate composite. Int Commun Heat Mass Transf 35(6):744–749CrossRefGoogle Scholar
  4. 4.
    Vulpe S, Nastase F, Nastase C, Stamatin I (2006) PAN-PAni nanocomposites obtained in thermocentrifugal fields. Thin Solid Films 495:113–117CrossRefGoogle Scholar
  5. 5.
    Sienkiewicz Z (1998) Biological effect of electromagnetic fields. Power Eng J 12(3):131–139CrossRefGoogle Scholar
  6. 6.
    Passaro VMN, Olio FD, Leonardis FD (2006) Electromagnetic field photonic sensors. Prog Quantum Electron 30:45–73CrossRefGoogle Scholar
  7. 7.
    Zhang P, Han X, Kang L, Qiang R, Liu W, Du Y (2013) Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption. RSC Adv 3:12694–12701CrossRefGoogle Scholar
  8. 8.
    Suresh RS, Kulkarni G (2014) Nanocomposites based on transition metal oxides in polyvinyl alcohol for EMI shielding application. Polym Bull 71:497–513CrossRefGoogle Scholar
  9. 9.
    Qin F, Brosseau C (2012) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 111:061301CrossRefGoogle Scholar
  10. 10.
    Goyal RK, Kadam A (2010) Polyphenylene sulphide/graphite composites for EMI shielding applications. Adv Mater Lett 1(2):143–147CrossRefGoogle Scholar
  11. 11.
    Yun J, Im JS, Kim HI, Lee YS (2011) Effect of oxyfluorination on electromagnetic interference shielding of polyaniline-coated multi-walled carbon nanotubes. Colloid Polym Sci 289:1749–1755CrossRefGoogle Scholar
  12. 12.
    Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285CrossRefGoogle Scholar
  13. 13.
    Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials. Nanoscale Res Lett 6:137CrossRefGoogle Scholar
  14. 14.
    Azim SS, Satheesh A, Ramu K, Ramu S, Venkatchari G (2006) Studies on graphite based conductive paint coatings. Prog Org Coat 55(1):1–4CrossRefGoogle Scholar
  15. 15.
    Belaabed B, Lamouri S, Naar N, Bourson P, Hamady SOS (2010) Polyaniline-doped benzene sulfonic acid/epoxy resin composites: structural, morphological, thermal and dielectric behaviours. Polym J 42:546–554CrossRefGoogle Scholar
  16. 16.
    Zou T, Zhao N, Shi C, Li J (2011) Microwave absorbing properties of activated carbon fibre polymer composites. Bull Mater Sci 34(1):75–79CrossRefGoogle Scholar
  17. 17.
    Wu J, Chung DDL (2002) Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer matrix composite by using activated carbon fibers. Carbon 40(3):445–447CrossRefGoogle Scholar
  18. 18.
    Rahaman M, Chaki TK, Khastgir D (2011) High-performance EMI shielding materials based on short carbon fiber-filled ethylene vinyl acetate copolymer, acrylonitrile butadiene copolymer, and their blends. Polym Compos 32(11):1790–1805CrossRefGoogle Scholar
  19. 19.
    Wu KH, Ting TH, Wang GP, Ho WD, Shih CC (2008) Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites. Polym Degrad Stab 93(2):483–488CrossRefGoogle Scholar
  20. 20.
    Kwon SK, Ahn JM, Kim GH, Chun CH, Hwang JS, Lee JH (2002) Microwave absorbing properties of carbon black/silicone rubber blend. Polym Eng Sci 42(11):2165–2171CrossRefGoogle Scholar
  21. 21.
    Oh JH, Oh KS, Kim CG, Hong CS (2004) Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Comp Part B 35(1):49–56CrossRefGoogle Scholar
  22. 22.
    Barba AA, Lamberti G, Amore MD, Acierno D (2006) Carbon black/silicone rubber blends as absorbing materials to reduce electromagnetic interferences (EMI). Polym Bull 57(4):587–593CrossRefGoogle Scholar
  23. 23.
    Fan Y, Yang H, Li M, Zou G (2009) Evaluation of the microwave absorption property of flake graphite. Mater Chem Phys 115:696–698CrossRefGoogle Scholar
  24. 24.
    Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan S (2009) Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926CrossRefGoogle Scholar
  25. 25.
    Zhang CS, Ni QQ, Fu SY, Kurashiki K (2007) Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer. Compos Sci Technol 67(14):2973–2980CrossRefGoogle Scholar
  26. 26.
    Ting TH, Jau YN, Yu RP (2012) Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents. Appl Surf Sci 258(7):3184–3190CrossRefGoogle Scholar
  27. 27.
    Li S, Gan M, Ma L, Yan J, Tang J, Dandan F, Li Z, Bai Y (2013) Preparation and microwave absorbing properties of polyaniline-modified silicon carbide composites. High Perform Polym 25(8):901–906CrossRefGoogle Scholar
  28. 28.
    Guo F, Zi W, Ji G, Zou L, Gan S (2015) Polyaniline containing W-type hexaferrite composites for microwave absorption in high-frequency applications. J Polym Res 22:48CrossRefGoogle Scholar
  29. 29.
    Cheng J, Yang J, Zhao B, Zhang D, Zheng S, Cao M (2015) Enhanced microwave absorption performance of polyaniline-coated CNT hybrids by plasma-induced graft polymerization. Appl Phys A 119:379–386CrossRefGoogle Scholar
  30. 30.
    Wu HJ, Wang LD, Guo SL, Shen ZY (2012) Double-layer structural design of dielectric ordered mesoporous carbon/paraffin composites for microwave absorption. Appl Phys A 108:439CrossRefGoogle Scholar
  31. 31.
    Rubinger CPL, Costa LC, Faez R, Martins CR, Rubinger RM (2009) Hopping conduction on PAni/PSS blends. Synth Metals 159:523–527CrossRefGoogle Scholar
  32. 32.
    Leyva ME, Barra GMO, Gorelova MM, Soares BG, Sens M (2001) Conducting SBS block copolymer-polyaniline blends prepared by mechanical mixing. J Appl Polym Sci 80:626–633CrossRefGoogle Scholar
  33. 33.
    Zeghina S, Wojkiewicz JL, Lamouri S, Belaabed B, Redon N (2014) Enhanced microwave absorbing properties of lightweight films based on polyaniline/aliphatic polyurethane composites in X band. J Appl Polym Sci.  https://doi.org/10.1002/APP.40961 Google Scholar
  34. 34.
    Gubbels F, Blacher S, Vanlathem E, Jerome R, Deltour R, Brouers F, Teyssie P (1995) Design of electrical conductive composites: key role of the morphology on the electrical-properties of carbon-black filled polymer blends. Macromolecules 28:1559CrossRefGoogle Scholar
  35. 35.
    Zhou P, Yu W, Zhou C, Liu F, Hou L, Wang J (2007) Morphology and electrical properties of carbon black filled LLDPE/EMA composites. J Appl Polym Sci 103:487CrossRefGoogle Scholar
  36. 36.
    Rubinger CPL, Ribeiro GM, Leyva ME, Rubinger RM, Soares BG (2012) Hopping conduction on carbon black/styrene–butadiene–styrene composites. J Mater Sci 47:860–865CrossRefGoogle Scholar
  37. 37.
    Leyva ME, Barra GMO, Moreira ACF, Soares BG, Khastgir D (2003) Electric, dielectric, and dynamic mechanical behavior of carbon black/styrene–butadiene–styrene composites. J Polym Sci Part B Polym Phys 41:2983–2997CrossRefGoogle Scholar
  38. 38.
    Bethe HA, Schwinger J (1943) Perturbation theory for cavities, NRDC report D1–117. Cornell University, USAGoogle Scholar
  39. 39.
    Slater J (1950) Microwave electronics. Van Nostrand Co., Ltd., New YorkGoogle Scholar
  40. 40.
    Chen L, Ong CK, Tan BTG (1996) A resonant cavity for high accuracy measurement of microwave dielectric properties. Meas Sci Technol 7:1255–1259CrossRefGoogle Scholar
  41. 41.
    Peligrad DN, Nebendahl B, Kessler C, Mehring M, Dulcic A, Poek M, Paar D (1998) Cavity perturbation by superconducting films in microwave magnetic and electric fields. Phys Rev B 58:11652–11671CrossRefGoogle Scholar
  42. 42.
    Komarov VV, Yakovlev VV (2003) Modeling control over determination of dielectric properties by the perturbation technique. Microw Opt Lett 39:443–446CrossRefGoogle Scholar
  43. 43.
    El Bouazzaoui S, Achour ME, Brosseau C (2011) Microwave effective permittivity of carbon black filled polymers: comparison of mixing law and effective medium equation predictions. J Appl Phys 110:074105CrossRefGoogle Scholar
  44. 44.
    Rubinger CPL, Costa LC (2007) building a resonant cavity for the measurement of microwave dielectric permittivity of high loss materials. Microw Opt Technol Lett 49:1687–1690CrossRefGoogle Scholar
  45. 45.
    Schettini ARA, Khastgir D, Soares BG (2012) Microwave dielectric properties and EMI shielding effectiveness of poly(styrene-b-styrenebutadiene-styrene) copolymer filled with pani.dodecylbenzenesulfonic acid and carbon black. Polym Eng Sci.  https://doi.org/10.1002/pen.23090 Google Scholar
  46. 46.
    John H, Joseph R, Mathew KT (2007) Dielectric behavior of natural rubber composites in microwave fields. J Appl Polym Sci 103:2682–2686CrossRefGoogle Scholar
  47. 47.
    Yang S, Lozano K, Lomeli A, Foltz HD, Jones R (2005) Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Compos A 36:691–697CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Física e QuímicaUniversidade Federal de ItajubáItajubáBrazil

Personalised recommendations