Advertisement

Polymer Bulletin

, Volume 76, Issue 2, pp 701–724 | Cite as

Development of gelatin hydrogel pads incorporated with Eupatorium adenophorum essential oil as antibacterial wound dressing

  • P. ChuysinuanEmail author
  • N. Chimnoi
  • N. Reuk-Ngam
  • P. Khlaychan
  • A. Makarasen
  • N. Wetprasit
  • D. Dechtrirat
  • P. Supaphol
  • S. TechasakulEmail author
Original Paper
  • 226 Downloads

Abstract

In this study, gelatin hydrogel was obtained by mixing a 10 wt% gelatin solution with essential oil extracted from Eupatorium adenophorum Spreng plant (Crofton weed). This study aimed to fabricate gelatin hydrogel pads containing 5–30% v/v Eupatorium adenophorum emulsion. Incorporation of emulsion into hydrogels caused increase in gel fraction because of a change in the cross-link capacity and decrease in Young’s modulus, levels of stress at maximum load, and fraction of strain at yield, dose-dependently. Furthermore, the swelling and weight loss properties of the tested hydrogels increased with an increase in the emulsion content. E. adenophorum emulsion-loaded gelatin hydrogel pads for patients with open wounds as a result of injury or surgical procedure were evaluated by analyzing the release profiles and the antimicrobial activity of the hydrogels. The emulsion-loaded hydrogel pads presented good antibacterial activity against the test pathogens. The composition of E. adenophorum essential oil was analyzed using GC–MS to further determine the antimicrobial activity of the essential oil. All the emulsion-loaded gelatin hydrogels inhibited the growth of the tested pathogens, namely Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, and Escherichia coli. Moreover, the antibacterial activity increased with the increase in initial amount of emulsion in the hydrogels. Thus, hydrogels show potential for use as antibacterial wound dressings.

Graphical Abstract

Keywords

Gelatin Hydrogel Eupatorium adenophorum Antibacterial Essential oil 

Notes

Acknowledgements

The authors would like to acknowledge the financial support provided by the Thailand Research Fund (TRF; TRG5780204) and Chulabhorn Research Institute. This work was supported in part by the Research Pyramid, Radchadaphiseksomphot Endowment Fund (GCURP_58_02_63_01) of Chulalongkorn University.

References

  1. 1.
    Peppas N, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46CrossRefGoogle Scholar
  2. 2.
    Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRefGoogle Scholar
  3. 3.
    Liu J, Lin S, Li L, Liu E (2005) Release of theophylline from polymer blend hydrogels. Int J Pharm 298(1):117–125CrossRefGoogle Scholar
  4. 4.
    Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59(4):187–206CrossRefGoogle Scholar
  5. 5.
    Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60(15):1638–1649CrossRefGoogle Scholar
  6. 6.
    Ruiz-Cardona L, Sanzgiri YD, Benedetti L, Stella VJ, Topp EM (1996) Application of benzyl hyaluronate membranes as potential wound dressings: evaluation of water vapour and gas permeabilities. Biomaterials 17(16):1639–1643CrossRefGoogle Scholar
  7. 7.
    Grzybowski J, Kolodziej W, Trafny EA, Struzyna J (1997) A new anti-infective collagen dressing containing antibiotics. J Biomed Mater Res 36(2):163–166CrossRefGoogle Scholar
  8. 8.
    Suzuki Y, Nishimura Y, Tanihara M, Suzuki K, Nakamura T, Shimizu Y (1998) Evaluation of a novel alginate gel dressing: cytotoxicity to fibroblasts in vitro and foreign-body reaction in pig skin in vivo. J Biomed Mater Res 39(2):317–322CrossRefGoogle Scholar
  9. 9.
    Olsen D, Yang C, Bodo M, Chang R, Leigh S, Baez J (2003) Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev 55(12):1547–1567CrossRefGoogle Scholar
  10. 10.
    Young S, Wong M, Tabata Y, Mikos AG (2005) Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Controll Release 109(1):256–274CrossRefGoogle Scholar
  11. 11.
    Cataldo F, Ursini O, Lilla E, Angelini G (2007) Radiation-induced crosslinking of collagen gelatin into a stable hydrogel. J Radioanal Nucl Chem 275(1):125–131CrossRefGoogle Scholar
  12. 12.
    Van Vlierberghe S, Dubruel P, Lippens E, Masschaele B, Van Hoorebeke L, Cornelissen M (2008) Toward modulating the architecture of hydrogel scaffolds: curtains versus channels. J Mater Sci Mater Med 19(4):1459–1466CrossRefGoogle Scholar
  13. 13.
    Nazzal S, Wang Y (2001) Characterization of soft gelatin capsules by thermal analysis. Int J Pharm 230(1):35–45CrossRefGoogle Scholar
  14. 14.
    Konishi M, Tabata Y, Kariya M, Hosseinkhani H, Suzuki A, Fukuhara K (2005) In vivo anti-tumor effect of dual release of cisplatin and adriamycin from biodegradable gelatin hydrogel. J Controll Release 103(1):7–19CrossRefGoogle Scholar
  15. 15.
    Fukunaka Y, Iwanaga K, Morimoto K, Kakemi M, Tabata Y (2002) Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation. J Controll Release 80(1):333–343CrossRefGoogle Scholar
  16. 16.
    Hori K, Sotozono C, Hamuro J, Yamasaki K, Kimura Y, Ozeki M (2007) Controlled-release of epidermal growth factor from cationized gelatin hydrogel enhances corneal epithelial wound healing. J Controll Release 118(2):169–176CrossRefGoogle Scholar
  17. 17.
    Choi SS, Regenstein J (2000) Physicochemical and sensory characteristics of fish gelatin. J Food Sci 65(2):194–199CrossRefGoogle Scholar
  18. 18.
    P-o Rujitanaroj, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49(21):4723–4732CrossRefGoogle Scholar
  19. 19.
    Rattanaruengsrikul V, Pimpha N, Supaphol P (2009) Development of gelatin hydrogel pads as antibacterial wound dressings. Macromol Biosci 9(10):1004–1015CrossRefGoogle Scholar
  20. 20.
    Wang W, Zhang X, Teng A, Lui A (2017) Mechanical reinforcement of gelatin hydrogel with nanofiber cellulose as a function of percolation concentration. Int J Biol Macromol 103:226–233CrossRefGoogle Scholar
  21. 21.
    Gelli R, Del Buffa S, Tempesti P, Bonini M, Ridi F, Baglioni P (2018) Enhanced formation of hydroxyapatites in gelatin/imogolite macroporous hydrogels. J Colloid Interface Sci 511:145–154CrossRefGoogle Scholar
  22. 22.
    Venien A, Levieux D (2005) Differentiation of bovine from porcine gelatines using polyclonal anti-peptide antibodies in indirect and competitive indirect ELISA. J Pharm Biomed 39(3):418–424CrossRefGoogle Scholar
  23. 23.
    Vandervoort J, Ludwig A (2004) Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. Eur J Pharm Biopharm 57(2):251–261CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Venugopal J, Huang Z-M, Lim C, Ramakrishna S (2006) Crosslinking of the electrospun gelatin nanofibers. Polymer 47(8):2911–2917CrossRefGoogle Scholar
  25. 25.
    Miyoshi M, Kawazoe T, Igawa HH, Tabata Y, Ikada Y, Suzuki S (2005) Effects of bFGF incorporated into a gelatin sheet on wound healing. J Biomater Sci Polym Ed 16(7):893–907CrossRefGoogle Scholar
  26. 26.
    Huang S, Deng T, Wu H, Chen F, Jin Y (2006) Wound dressings containing bFGF-impregnated microspheres. J Microencapsul 23(3):277–290CrossRefGoogle Scholar
  27. 27.
    Liu T-Y, Hu S-H, Liu K-H, Liu D-M, Chen S-Y (2006) Preparation and characterization of smart magnetic hydrogels and its use for drug release. J Magn Magn Mater 304(1):397–399CrossRefGoogle Scholar
  28. 28.
    Liu J, Meisner D, Kwong E, Wu XY, Johnston MR (2007) A novel trans-lymphatic drug delivery system: implantable gelatin sponge impregnated with PLGA—paclitaxel microspheres. Biomaterials 28(21):3236–3244CrossRefGoogle Scholar
  29. 29.
    Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI (2005) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26(30):5999–6008CrossRefGoogle Scholar
  30. 30.
    Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27(13):2705–2715CrossRefGoogle Scholar
  31. 31.
    Cui L, Jia J, Guo Y, Liu Y, Zhu P (2014) Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydr Polym 99:31–38CrossRefGoogle Scholar
  32. 32.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. Int J Adv Res 6(2):105–121Google Scholar
  33. 33.
    Calo E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRefGoogle Scholar
  34. 34.
    Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007CrossRefGoogle Scholar
  35. 35.
    Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, Dennis VA, Singh SR (2017) Advances in skin regeneration using tissue engineering. Int J Mol Sci 18(4):1–19CrossRefGoogle Scholar
  36. 36.
    Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ (2018) Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm 127:130–141CrossRefGoogle Scholar
  37. 37.
    Rai L, Sharma E (1994) Medicinal plants of the Sikkim Himalaya: status, usage and potential. Bishen Singh Mahendra Pal Singh, DehradunGoogle Scholar
  38. 38.
    Ansari S, Jain P, Tyagi R, Joshi B, Barar F (1983) Phytochemical and phamacological studies of the aerial parts of Eupatorium adenophorum L. Herba Pol 29:93–96Google Scholar
  39. 39.
    Chakravarty AK, Mazumder T, Chatterjee SN (2011) Anti-inflammatory potential of ethanolic leaf extract of Eupatorium adenophorum Spreng. Through alteration in production of TNF-α, ROS and expression of certain genes. Evid Based Complement Alternat Med 2011:1–10CrossRefGoogle Scholar
  40. 40.
    Bhattarai N, Shrestha G (2009) Antibacterial and antifungal effect of Eupatorium adenophorum Spreng against bacterial and fungal isolates. Int J Pharm 10:91–95Google Scholar
  41. 41.
    Powell KC, Damitz R, Chauhan A (2017) Relating emulsion stability to interfacial properties for pharmaceutical emulsions stabilized by Pluronic F68 surfactant. Int J Pharm 521(1):8–18CrossRefGoogle Scholar
  42. 42.
    Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Controll Release 82(2):189–212CrossRefGoogle Scholar
  43. 43.
    Adams RP (2009) Identification of essential oil components by gas chromatography/mass spectroscopy, 4th edn. Allured Publishing Corporation, IllinoisGoogle Scholar
  44. 44.
    Courtois EA, Paine CT, Blandinieres P-A, Stien D, Bessiere J-M, Houel E (2009) Diversity of the volatile organic compounds emitted by 55 species of tropical trees: a survey in French Guiana. J Chem Ecol 35(11):1349CrossRefGoogle Scholar
  45. 45.
    Yu JQ, Liao ZX, Cai XQ, Lei JC, Zou GL (2007) Composition, antimicrobial activity and cytotoxicity of essential oils from Aristolochia mollissima. Environ Toxicol Pharmacol 23(2):162–167CrossRefGoogle Scholar
  46. 46.
    Utsunomiya H, Kawata J, Chanoki W, Shirakawa N, Miyazawa M (2005) Components of essential oil from woods of prunus mume Sieb. et Zucc. J Oleo Sci 54(11):609–612CrossRefGoogle Scholar
  47. 47.
    Limberger RP, Simões-Pires CA, Sobral M, Menut C, Bessiere JM, Henriques AT (2003) Essential oils of six Gomidesia spp. from southern Brazil. Flavour Fragr J 18(2):144–147CrossRefGoogle Scholar
  48. 48.
    Isidorov V, Zenkevich I, Dubis E, Slowikowski A, Wojciuk E (1998) Group identification of essential oils components using partition coefficients in a hexane–acetonitrile system. J Chromatogr A 814(1):253–260CrossRefGoogle Scholar
  49. 49.
    Weyerstahl P, Marschall H, Seelmann I, Kaul VK (1997) Constituents of the flower essential oil of Ageratina adenophora (Spreng.) K. et R. from India. Flavour Fragr J 12(6):387–396CrossRefGoogle Scholar
  50. 50.
    Adio AM, von Reuß SH, Paul C, Muhle H, König WA (2007) Sesquiterpenoid constituents of the liverwort Marsupella aquatica. Tetrahedron Asymmetry 18(10):1245–1253CrossRefGoogle Scholar
  51. 51.
    Padalia RC, Verma RS, Sundaresan V (2010) Volatile constituents of three invasive weeds of Himalayan region. Rec Nat Prod 4(2):109Google Scholar
  52. 52.
    Bohlmann F, Gupta RK (1981) Six cadinene derivatives from Ageratina adenophora. Phytochemistry 20(6):1432–1433CrossRefGoogle Scholar
  53. 53.
    Wang MZ, Zhang YY, Li SL, Cai XH, Luo XD (2006) Cadinene derivatives from Eupatorium adenophorum. Helv Chim Acta 89(12):3104–3108CrossRefGoogle Scholar
  54. 54.
    Nieuwenhove IV, Salamon A, Peters K, Graulusa GJ, Martins JC, Frankel D, Kersemans K, Vos FD, Vlierberghe SV, Dubruel P (2016) Gelatin-and starch-based hydrogels. Part A: hydrogel development, characterization and coating. Carbohydr Polym 152:129–139CrossRefGoogle Scholar
  55. 55.
    Khorasani MT, Joorabloo A, Moghaddam A, Shamsi H, MansooriMoghadam Z (2018) Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int J Biol Macromol 114:1203–1215CrossRefGoogle Scholar
  56. 56.
    Javanbakht S, Namazi H (2018) Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater Sci Eng C 87:50–59CrossRefGoogle Scholar
  57. 57.
    Jangde R, Srivastava S, Singh MR, Singh D (2108) In vitro and In vivo characterization of quercetin loaded multiphase hydrogel for wound healing application. Int J Biol Macromol 115:1211–1217CrossRefGoogle Scholar
  58. 58.
    Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Controll Release 5(1):37–42CrossRefGoogle Scholar
  59. 59.
    Boonyanugomol W, Kraisriwattana K, Rukseree K, Boonsam K, Narachai P (2017) In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains. J Infect Public Health 10:586–592CrossRefGoogle Scholar
  60. 60.
    Araújo FM, Dantas MC, e Silva LS, Aona LY, Tavares IF, de Souza-Neta LC (2017) Antibacterial activity and chemical composition of the essential oil of Croton heliotropiifolius Kunth from Amargosa, Bahia, Brazil. Ind Crops Prod 105:203–206CrossRefGoogle Scholar
  61. 61.
    Quiroga EN, Sampietro AR, Vattuone MA (2001) Screening antifungal activities of selected medicinal plants. J Ethnopharmacol 74(1):89–96CrossRefGoogle Scholar
  62. 62.
    Subba B, Kandel RC (2012) Chemical composition and bioactivity of essential oil of Ageratina adenophora from Bhaktapur district of Nepal. J Nepal Chem Soc 30:78–86CrossRefGoogle Scholar
  63. 63.
    Kurade NP, Jaitak V, Kaul VK, Sharma OP (2010) Chemical composition and antibacterial activity of essential oils of Lantana camara, Ageratum houstonianum and Eupatorium adenophorum. Pharm Bio 48(5):539–544CrossRefGoogle Scholar
  64. 64.
    Jimenez M, Domínguez JA, Pascual-Pineda LA, Azuara E, Beristain CI (2018) Elaboration and characterization of O/W cinnamon (Cinnamomum zeylanicum) and black pepper (Piper nigrum) emulsions. Food Hydrocoll 77:902–910CrossRefGoogle Scholar
  65. 65.
    Balakrishnan B, Mohanty M, Umashankar P, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26(32):6335–6342CrossRefGoogle Scholar
  66. 66.
    Patel S, Srivastava S, Singh MR, Singh D (2018) Preparation and optimization of chitosan-gelatin films for sustained delivery of lupeol for wound healing. Int J Biol Macromol 107:1888–1897CrossRefGoogle Scholar
  67. 67.
    Zhuang C, Tao F, Cui Y (2015) Anti-degradation gelatin films crosslinked by active ester based on cellulose. RSC Adv 5(64):52183–52193CrossRefGoogle Scholar
  68. 68.
    Wang H, Chu C, Cai R, Jiang S, Zhai L, Lu J (2015) Synthesis and bioactivity of gelatin/multiwalled carbon nanotubes/hydroxyapatite nanofibrous scaffolds towards bone tissue engineering. Rsc Adv 5(66):53550–53558CrossRefGoogle Scholar
  69. 69.
    Kavoosi G, Rahmatollahi A, Mahdi Dadfar SM, Purfard AM (2014) Effects of essential oil on the water binding capacity, physicomechanical properties, antioxidant and antibacterial activity of gelatin films. LWT Food Sci Technol 57:556–561CrossRefGoogle Scholar
  70. 70.
    Tongnuanchan P, Benjakul S, Prodpron T (2012) Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chem 134:1571–1579CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. Chuysinuan
    • 1
    Email author
  • N. Chimnoi
    • 2
  • N. Reuk-Ngam
    • 1
  • P. Khlaychan
    • 1
  • A. Makarasen
    • 1
  • N. Wetprasit
    • 3
  • D. Dechtrirat
    • 4
  • P. Supaphol
    • 5
  • S. Techasakul
    • 1
    Email author
  1. 1.Laboratory of Organic SynthesisChulabhorn Research InstituteBangkokThailand
  2. 2.Laboratory of Natural ProductsChulabhorn Research InstituteBangkokThailand
  3. 3.Department of Biotechnology, Faculty of ScienceRamkhamhaeng UniversityBangkokThailand
  4. 4.Department of Materials Science, Faculty of ScienceKasetsart UniversityBangkokThailand
  5. 5.The Petroleum and Petrochemical CollegeChulalongkorn UniversityBangkokThailand

Personalised recommendations