Skip to main content
Log in

Effect of POE-g-GMA on mechanical, rheological and thermal properties of poly(lactic acid)/poly(propylene carbonate) blends

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Glycidyl methacrylate (GMA) functionalized polyolefin elastomers (POE) (POE-g-GMA), which was a reactive processing agent, was melt-blended with poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC) by twin-screw extrusion. The mechanical property results showed that with the addition of POE-g-GMA, the elongation at break and impact toughness of PLA/PPC blends increased while the tensile strength decreased. Dynamic thermomechanical analysis (DMA) and scanning electron microscope (SEM) results indicated that PLA/POE-g-GMA/PPC blends were partly miscible and the addition of POE-g-GMA improved the compatibility of blends. The higher Tcs and lower Tms of PLA/POE-g-GMA/PPC blends showed a depressed crystalline ability of PLA caused by the decreased chain mobility according to the differential scanning calorimetry results and the thermal stability of PLA/POE-g-GMA/PPC blends was enhanced. Rheological results revealed that the addition of POE-g-GMA made the storage modulus (G′), loss modulus (G″) and complex viscosity of the blends increase, the melt strength also improved. These findings contributed to the biodegradable materials application for designing and manufacturing PLA film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Van VK, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21:433–442

    Article  Google Scholar 

  2. Zhu DY, Guo JW, Chen SH, Pan LH (2015) Synthesis and performances of biodegradable copolymers of disodium cis-epoxysuccinate and 2,3-oxiranernethane sulfonic acid sodium used as nonphosphoric detergent builders. Polym Bull 72:93–102

    Article  CAS  Google Scholar 

  3. Chen DK, Li JB, Ren J (2012) Biocomposites based on ramie fibers and poly(L-lactic acid) (PLLA): morphology and properties. Polym Adv Technol 23:198–207

    Article  Google Scholar 

  4. Rodrigo GFC, Glaucia SB, Ribeiro C (2016) Nanocomposite fibers of poly(lactic acid)/titanium dioxide prepared by solution blow spinning. Polym Bull 73:2973–2985

    Article  Google Scholar 

  5. Chen DK, Li JB, Ren J (2011) Influence of fiber surface-treatment on interfacial property of poly(L-lactic acid)/ramie fabric biocomposites under UV-irradiation hydrothermal aging. Mater Chem Phys 126:524–531

    Article  CAS  Google Scholar 

  6. Bijarimi M, Ahmad S, Alam M (2016) Toughening effect of liquid natural rubber on the morphology and thermo-mechanical properties of the poly(lactic acid) ternary blend. Polym Bull 74:3301–3317

    Article  Google Scholar 

  7. Harada M, Iida K, Okamoto K, Hayashi H, Hirano K (2008) Reactive compatibilization of biodegradable poly(lactic acid)/poly(epsilon-caprolactone) blends with reactive processing agents. Polym Eng Sci 48:1359–1368

    Article  CAS  Google Scholar 

  8. Xie L, Xu H, Niu B, Ji X, Chen J, Li ZM, Hsiao BS, Zhong GJ (2014) Unprecedented access to strong and ductile poly(lactic acid) by introducing in situ nanofibrillar poly(butylene succinate) for green packaging. Biomacromol 15:4054–4064

    Article  CAS  Google Scholar 

  9. Arruda LC, Magaton M, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Test 43:27–37

    Article  CAS  Google Scholar 

  10. Zembouai I, Kaci M, Bruzaud S, Dumazert L, Bourmaud A, Mahlous M, Lopez-Cuesta JM, Grohens Y (2016) Gamma irradiation effects on morphology and properties of PHBV/PLA blends in presence of compatibilizer and Cloisite 30B. Polym Test 49:29–37

    Article  CAS  Google Scholar 

  11. Wu DD, Li W, Hao YP, Li ZL, Yang HL (2015) Mechanical properties, miscibility, thermal stability, and rheology of poly(propylene carbonate) and poly(ethylene-co-vinyl acetate) blends. Polym Bull 72:851–865

    Article  CAS  Google Scholar 

  12. Du LC, Meng YZ, Wang SJ, Tjong SC (2004) Synthesis and degradation behavior of poly(propylene carbonate) derived from carbon dioxide and propylene oxide. J Appl Polym Sci 92:1840–1846

    Article  CAS  Google Scholar 

  13. Kong JJ, Li ZL, Cao ZW, Han CY (2017) The excellent gas barrier properties and unique mechanical properties of poly(propylene carbonate)/organo-montmorillonite nanocomposites. Polym Bull. https://doi.org/10.1007/s00289-017-2002-6

    Article  Google Scholar 

  14. Gao M, Ren ZJ, Yan SK, Sun JR, Chen XC (2012) An optical microscopy study on the phase structure of poly(L-lactide acid)/poly(propylene carbonate) blends. J Phys Chem B 116:9832–9837

    Article  CAS  Google Scholar 

  15. Ma XF, Yu JG, Wang N (2006) Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. J Polym Sci Pol Phys 44:94–101

    Article  CAS  Google Scholar 

  16. Liu HZ, Zhang JW (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci Pol Phys 49:1051–1083

    Article  CAS  Google Scholar 

  17. Al-Itry R, Lamnawar K, Maazouz A (2014) Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends. Rheol Acta 53:501–517

    Article  CAS  Google Scholar 

  18. Zhang CL, Feng LF, Gu XP, Hoppe S, Hu GH (2007) Efficiency of graft copolymers as compatibilizers for immiscible polymer blends. Polymer 48:5940–5949

    Article  CAS  Google Scholar 

  19. Hlavata D, Horak Z, Lednicky F, Hromadkova J, Pleska A, Zanevskii YV (2001) Compatibilization efficiency of styrene-butadiene multiblock copolymers in PS/PP blends. J Polym Sci Pol Phys 39:931–942

    Article  CAS  Google Scholar 

  20. Xu YW, Thurber CM, Lodge TP, Hillmyer MA (2012) Synthesis and remarkable efficacy of model polyethylene-graft-poly(methyl methacrylate) copolymers as compatibilizers in polyethylene/poly(methyl methacrylate) blends. Macromolecules 45:9604–9610

    Article  CAS  Google Scholar 

  21. Malik R, Hall CK, Genzer J (2011) Effect of copolymer compatibilizer sequence on the dynamics of phase separation of immiscible binary homopolymer blends. Soft Matter 7:10620–10630

    Article  CAS  Google Scholar 

  22. Wang XY, Peng SW, Dong LS (2005) Effect of poly(vinyl acetate) (PVAc) on thermal behavior and mechanical properties of poly(3-hydroxybutyrate)/poly(propylene carbonate) (PHB/PPC) blends. Colloid Polym Sci 284:167–174

    Article  CAS  Google Scholar 

  23. Yao M, Deng H, Mai F, Wang K, Zhang Q, Chen F, Fu Q (2011) Modification of poly(lactic acid)/poly(propylene carbonate) blends through melt compounding with maleic anhydride. Express Polym Lett 5:937–949

    Article  CAS  Google Scholar 

  24. Gao J, Bai H, Zhang Q, Gao Y, Chen L, Fu Q (2012) Effect of homopolymer poly(vinyl acetate) on compatibility and mechanical properties of poly(propylene carbonate)/poly(lactic acid) blends. Express Polym Lett 6:860–870

    Article  CAS  Google Scholar 

  25. Semba T, Kitagawa K, Ishiaku US, Hamada H (2006) The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends. J Appl Polym Sci 101:1816–1825

    Article  CAS  Google Scholar 

  26. Feng YL, Hu YX, Yin JH, Zhao GY, Jiang W (2013) High impact poly(lactic acid)/poly(ethylene octene) blends prepared by reactive blending. Polym Eng Sci 53:389–396

    Article  CAS  Google Scholar 

  27. Zhao YQ, Cheung HY, Lau KT, Xu CL, Zhao DD, Li HL (2010) Silkworm silk/poly(lactic acid) biocomposites: dynamic mechanical, thermal and biodegradable properties. Polym Degrad Stabil 95:1978–1987

    Article  CAS  Google Scholar 

  28. Li XH, Meng YZ, Zhu Q, Tjong SC (2003) Thermal decomposition characteristics of poly(propylene carbonate) using TG/IR and Py-GC/MS techniques. Polym Degrad Stabil 81:157–165

    Article  CAS  Google Scholar 

  29. Zhang NW, Wang QF, Ren J, Wang L (2009) Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J Mater Sci 44:250–256

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are graceful to the National High-Tech R&D Program of China (no. 2013AA032202), the National Natural Science Foundation of China (no. 51203118), the Shanghai Automotive Industry Science and Technology Development Foundation (Grant no. 1006), the Fundamental Research Funds for the Central Universities and the Open Funds for Characterization of Tongji University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wang, J., Cai, SY. et al. Effect of POE-g-GMA on mechanical, rheological and thermal properties of poly(lactic acid)/poly(propylene carbonate) blends. Polym. Bull. 75, 5437–5454 (2018). https://doi.org/10.1007/s00289-018-2339-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2339-5

Keywords

Navigation