Thermo/pH/magnetic-triple sensitive poly(N-isopropylacrylamide-co-2-dimethylaminoethyl) methacrylate)/sodium alginate modified magnetic graphene oxide nanogel for anticancer drug delivery

  • Ghasem Rezanejade Bardajee
  • Zari Hooshyar
Original Paper


Herein, thermo/pH/magnetic-triple sensitive nanogel comprised of poly(N-isopropylacrylamide), poly(2-dimethylaminoethyl) methacrylate), sodium alginate, and magnetic graphene oxide were synthesized using N,N-methylenebisacrylamide as a crosslinking agent, sodium dodecylsulfate as a surfactant, and ammonium persulfate as an initiator. The size, chemical structure, thermal stability, and morphology of the prepared nanogel were characterized using different methods. Transmittance of the obtained nanogel was investigated at varying pH and temperature in the presence and absence of magnet. The drug loading ability of synthesized nanogel was examined at different times and concentrations of doxorubicin. Additionally, the release rate of doxorubicin as an anticancer drug from the loaded nanogel was studied at different pH and temperature in the presence and absence of magnet. The biological performance of the formed nanogel was evaluated by seeding it onto MCF-7 cells at different times and concentrations. It was found that this triple responsible nanogel might provide a perfect basis for controlled drug delivery systems.


Nanogel Magnetic graphene oxide Anticancer drug 



The authors wish to thank Payame Noor University and National Elites Foundation for their financial support of this study.


  1. 1.
    Soni KS, Desale SS, Bronich TK (2016) Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 240:109–126CrossRefGoogle Scholar
  2. 2.
    Debele TA, Mekuria SL, Tsai H (2016) Polysaccharide based nanogels in the drug delivery system: application as the carrier of pharmaceutical agents. Mater Sci Eng C 68:964–981CrossRefGoogle Scholar
  3. 3.
    Ma Y, Ge Y, Li L (2017) Advancement of multifunctional hybrid nanogel systems: construction and application in drug co-delivery and imaging technique. Mater Sci Eng C 71:1281–1292CrossRefGoogle Scholar
  4. 4.
    Park CW, Yang H, Woo M, Lee KS, Kim J (2017) Completely disintegrable redox-responsive poly(amino acid) nanogels for intracellular drug delivery. J Ind Eng Chem 45:182–188CrossRefGoogle Scholar
  5. 5.
    Pujana MA, Pérez-Álvarez L, Iturbe LCC, Katime I (2014) pH-sensitive chitosan-folate nanogels crosslinked with biocompatible dicarboxylic acids. Eur Polym J 61:215–225CrossRefGoogle Scholar
  6. 6.
    Nita LE, Chiriac AP, Diaconu A, Tudorachi N, Mititelu-Tartau L (2016) Multifunctional nanogels with dual temperature and pH responsiveness. Int J Pharm 515:165–175CrossRefGoogle Scholar
  7. 7.
    Sahu P, Kashaw SK, Jain S, Sau S, Iyer AK (2017) Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: in vitro and ex vivo studies. J Control Release 253:122–136CrossRefGoogle Scholar
  8. 8.
    How S, Chen Y, Hsieh P, Wang SSS, Jan J (2017) Cell-targeted, dual reduction- and pH-responsive saccharide/lipoic acid-modified poly(l-lysine) and poly(acrylic acid) polyionic complex nanogels for drug delivery. Colloids Surf B Biointerfaces 153:244–252CrossRefGoogle Scholar
  9. 9.
    Cheng X, Jin Y, Qi R, Fan W, Li H, Sun X, Lai S (2016) Dual pH and oxidation-responsive nanogels crosslinked by diselenide bonds for controlled drug delivery. Polymer 101:370–378CrossRefGoogle Scholar
  10. 10.
    Hathaway H, Alves DR, Bean J, Esteban PP, Ouadi K, Sutton JM, Jenkins ATA (2015) Poly(N-isopropylacrylamide-co-allylamine) (PNIPAM-co-ALA) nanospheres for the thermally triggered release of Bacteriophage K. Eur J Pharm Biopharm 96:437–441CrossRefGoogle Scholar
  11. 11.
    Elashnikov R, Slepička P, Rimpelova S, Ulbrich P, Švorčík V, Lyutakov O (2017) Temperature-responsive PLLA/PNIPAM nanofibers for switchable release. Mater Sci Eng C 72:293–300CrossRefGoogle Scholar
  12. 12.
    Dhanya S, Bahadur D, Kundu GC, Srivastava R (2013) Maleic acid incorporated poly-(N-isopropylacrylamide) polymer nanogels for dual-responsive delivery of doxorubicin hydrochloride. Eur Polym J 49:22–32CrossRefGoogle Scholar
  13. 13.
    Qian K, Ma Y, Wan J, Geng S, Li H, Fu Q, Peng X, Kan X, Zhou G, Liu W, Xiong B, Zhao Y, Zheng C, Yang X, Xu H (2015) The studies about doxorubicin-loaded p(N-isopropyl-acrylamide-co-butyl methylacrylate) temperature-sensitive nanogel dispersions on the application in TACE therapies for rabbit VX2 liver tumor. J Control Release 212:41–49CrossRefGoogle Scholar
  14. 14.
    Duan C, Zhang D, Wang F, ZhengD Jia L, Feng F, Liu Y, Wang Y, Tian K, Wang F, Zhang Q (2011) Chitosan-g-poly(N-isopropylacrylamide) based nanogels for tumor extracellular targeting. Int J Pharm 409:252–259CrossRefGoogle Scholar
  15. 15.
    Liu X, Guo H, Zha L (2012) Study of pH/temperature dual stimuli-responsive nanogels with interpenetrating polymer network structure. Polym Int 61:1144–1150CrossRefGoogle Scholar
  16. 16.
    Zhao X, Wang T, Liu W, Wang C, Wang D, Shang T, Shen L, Ren L (2011) Multifunctional Au@IPN-pNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment. J Mater Chem 21:7240–7247CrossRefGoogle Scholar
  17. 17.
    Liu G, Zhu C, Xu J, Xin Y, Yang T, Li J, Shi L, Guo Z, Liu W (2013) Thermo-responsive hollow silica microgels with controlled drug release properties. Colloids Surf B 111:7–14CrossRefGoogle Scholar
  18. 18.
    Lapeyre V, Ancla C, Catargi B, Ravaine V (2008) Glucose-responsive microgels with a core–shell structure. J Colloid Interface Sci 327:316–323CrossRefGoogle Scholar
  19. 19.
    Marek SR, Conn CA, Peppas NA (2010) Cationic nanogels based on diethylaminoethyl methacrylate. Polymer 51:1237–1243CrossRefGoogle Scholar
  20. 20.
    Molina M, Asadian-Birjand M, Balach J, Bergueiro J, Miceli E, Calderón M (2015) Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 44:6161–6186CrossRefGoogle Scholar
  21. 21.
    Raemdonck K, Demeester J, Smedt SD (2009) Advanced nanogel engineering for drug delivery. Soft Matter 5:707–715CrossRefGoogle Scholar
  22. 22.
    Deng L, Zhai Y, Guo S, Jin F, Xie Z, He X, Dong A (2009) Investigation on properties of P((MAA-co-DMAEMA)-g-EG) polyampholyte nanogels. J Nanopart Res 11:365–374CrossRefGoogle Scholar
  23. 23.
    Huang J, Xue Y, Cai N, Zhang H, Wen K, Luo X, Long S, Yu F (2015) Efficient reduction and pH co-triggered DOX-loaded magnetic nanogel carrier using disulfide crosslinking. Mater Sci Eng C 46:41–51CrossRefGoogle Scholar
  24. 24.
    Demarchi CA, Debrassi A, Buzzi FC, Corrêa R, Filho VC, Rodrigues CA, Nedelko N, Demchenko P, Ślawska-Waniewska A, Dłużewski P, Greneche J (2014) A magnetic nanogel based on O-carboxymethylchitosan for antitumor drug delivery: synthesis, characterization and in vitro drug release. Soft Matter 10:3441–3450CrossRefGoogle Scholar
  25. 25.
    Hong J, Gong P, Xu D, Sun H, Yao S (2007) Synthesis and characterization of carboxyl-functionalized magnetic nanogel via “green” photochemical method. J Appl Polym Sci 105:1882–1887CrossRefGoogle Scholar
  26. 26.
    Cong H, He J, Lu Y, Yu S (2010) Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications. Small 6:169–173CrossRefGoogle Scholar
  27. 27.
    He F, Fan J, Ma D, Zhang L, Leung C, Chan HL (2010) The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon 48:3139–3144CrossRefGoogle Scholar
  28. 28.
    Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z (2012) A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res 5:199–212CrossRefGoogle Scholar
  29. 29.
    Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y (2009) Superparamagnetic grapheme oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19:2710–2714CrossRefGoogle Scholar
  30. 30.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRefGoogle Scholar
  31. 31.
    Shen J, Hu Y, Shi M, Li N, Ma H, Ye M (2010) One step synthesis of graphene oxide–magnetic nanoparticle composite. J Phys Chem C 114:1498–1503CrossRefGoogle Scholar
  32. 32.
    Fan M, Yan J, Tan H, Miao Y, Hu X (2014) Magnetic biopolymer nanogels via biological assembly for vectoring delivery of biopharmaceuticals. J Mater Chem B 2:8399–8405CrossRefGoogle Scholar
  33. 33.
    Wu Y, Luo HJ, Wang H, Wang C, Zhang J, Zhang ZL (2013) Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyltrimethylammonium bromide. J Colloid Interface Sci 394:183–191CrossRefGoogle Scholar
  34. 34.
    Pourjavadi A, Ghasemzadeh H, Mojahedi F (2009) Swelling properties of CMC-g-poly (AAm-co-AMPS) superabsorbent hydrogel. J Appl Polym Sci 113:3442–3449CrossRefGoogle Scholar
  35. 35.
    Bardajee GR, Pourjavadi A, Soleyman R (2011) Novel nano-porous hydrogel as a carrier matrix for oral delivery of tetracycline hydrochloride. Colloids Surf A 392:16–24CrossRefGoogle Scholar
  36. 36.
    Obeso-Vera C, Cornejo-Bravo JM, Serrano-Medina A, Licea-Claverie A (2013) Effect of crosslinkers on size and temperature sensitivity of poly(N-isopropylacrylamide) microgels. Polym Bull 70:653–664CrossRefGoogle Scholar
  37. 37.
    Yang X, Chen W, Huang J, Zhou Y, Zhu Y, Li C (2015) Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system. Sci Rep 5:10632CrossRefGoogle Scholar
  38. 38.
    Qiu L, Hong C, Pan C (2015) Doxorubicin-loaded aromatic imine-contained amphiphilic branched star polymer micelles: synthesis, self-assembly, and drug delivery. Int J Nanomed 10:3623–3640Google Scholar
  39. 39.
    Liu SQ, Tong YW, Yang Y (2005) Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d, l-lactide-co-glycolide) with varying compositions. Biomaterials 26:5064–5074CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations