Polymer Bulletin

, Volume 75, Issue 11, pp 5217–5234 | Cite as

Magnetic and dielectric properties of nickel-ferrite-embedded natural rubber composites

  • Sankar S. Menon
  • Radhu Krishna
  • Lida Wilson
  • Sreedha Sambhudevan
  • Balakrishnan Shankar
  • Anshida Mayeen
  • Nandakumar Kalarikkal
Original Paper


Spinel-structured nickel ferrite has been prepared using co-precipitation method. The ferrite particles prepared were characterized using XRD, FTIR, and TEM and were confirmed to be in the nano-regime. Natural rubber composites were prepared with different loadings of nickel ferrite like 5, 15, 25, 50, and 75 (in part per hundred rubber, phr). The mechanical, swelling, and magnetic properties were analyzed using the standard methods. Dielectric measurements show that permittivity decreases with increase in frequency and increases with increase in ferrite loading. Tan delta value also was found to increase with filler loading which may be attributed to the presence of interfacial polarization.


Natural rubber Nickel ferrite Dielectric permittivity Interfacial polarization 


  1. 1.
    Aliahmad M, Noori M (2013) Synthesis and characterization of nickel ferrite nanoparticles by chemical method. Indian J Phys 5(87):431–434CrossRefGoogle Scholar
  2. 2.
    Nejati K, Zabihi R (2012) Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem Cent J 6:23CrossRefGoogle Scholar
  3. 3.
    Parekh K (2010) Effect of preparative conditions on magnetic properties of CoFe2O4 nanoparticles. Indian J Pure Appl Phys 48:581–585Google Scholar
  4. 4.
    George M, John AM, Nair SS, Joy PA, Anantharaman MR (2006) Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J Magn Magn Mater 302:190–195CrossRefGoogle Scholar
  5. 5.
    Atif M, Nadeem M (2014) Sol–gel synthesis of nanocrystalline Zn1 − xNixFe2O4 ceramics and its structural, magnetic and dielectric properties. J Sol-Gel Sci Technol 72(3):615–626CrossRefGoogle Scholar
  6. 6.
    Gyergyek S, Drofenik M, Makovec D (2012) Oleic-acid-coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis. Mater Chem Phys 133:515–522CrossRefGoogle Scholar
  7. 7.
    Sousa E, Alves R, Aquino R, Sousa MH, Goya GF, Rechenberg HR, Tourinho FA, Depeyrot J (2005) Experimental evidence of surface effects in the magnetic dynamics behavior of ferrite nanoparticles. J Magn Magn Mater 289:118–121CrossRefGoogle Scholar
  8. 8.
    Pankhurst QA, Pollard RJ (1991) Origin of the spin-canting anomaly in small ferrimagnetic particles. Phys Rev Lett 67(2):248CrossRefGoogle Scholar
  9. 9.
    Kodama RH, Berkowitz AE, McNiff EJ Jr, Foner S (1996) Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett 77:394CrossRefGoogle Scholar
  10. 10.
    Patil RP, Delekar SD, Mane DR, Hankare PP (2013) Synthesis, structural and magnetic properties of different metal ion substituted nanocrystalline zinc ferrite. Results Phys 3:129–133CrossRefGoogle Scholar
  11. 11.
    Lakshmi M, Vijaya Kumar K, Thyagarajan K (2016) Structural and magnetic properties of Cr-Co nanoferrite particles. Adv Nanopart 5:103CrossRefGoogle Scholar
  12. 12.
    Badr Aly M, Elshaikh Haroun A, Ashraf Ibraheim M (2011) Impacts of temperature and frequency on the dielectric properties for insight into the nature of the charge transports in the Tl2S layered single crystals. J Mod Phys 2:12–25CrossRefGoogle Scholar
  13. 13.
    Aliuzzaman M, Manjurul Haque M, Jannatul Ferdous M, Manjura Hoque S, Abdul Hakim M (2014) Effect of sintering time on the structural, magnetic and electrical transport properties of Mg0.35Cu0.20Zn0.45Fe1.94O4 ferrites. World J Condens Matter Phys 4:1Google Scholar
  14. 14.
    Jacob BP, Kumar A, Pant RP, Singh S, Mohammed EM (2011) Influence of preparation method on structural and magnetic, properties of nickel ferrite nanoparticles. Bull Mater Sci 34(7):1345–1350CrossRefGoogle Scholar
  15. 15.
    Saritha A, Joseph Kuruvilla, Thomas S, Muraleekrishnan R (2012) The role of surfactant type and modifier concentration in tailoring the properties of chlorobutyl rubber/organo clay nanocomposites. J Appl Polym Sci 124(6):4590–4597Google Scholar
  16. 16.
    Hundiwale DG, Kapadi UR, Desai MC, Bidkar SH (2002) Mechanical properties of natural rubber filled with flyash 85(5):995–1001Google Scholar
  17. 17.
    Rahimi M, Kameli P, Ranjbar M, Hajihashemi H, Salamati H (2013) The effect of zinc doping on the structural and magnetic properties of Ni1−xZnxFe2O4. J Mater Sci 48(7):2969–2976CrossRefGoogle Scholar
  18. 18.
    Othman Ali I (2014) Sol–gel synthesis of NiFe2O4 with PVA matrices and their catalytic activities for one-step hydroxylation of benzene into phenol. J Therm Anal Calorim 116(2):805–816CrossRefGoogle Scholar
  19. 19.
    Naseri MG, Saion E, Zadeh NK (2013) Band gap determination using absorption spectrum fitting procedure. Int Nano Lett 3:19CrossRefGoogle Scholar
  20. 20.
    Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3:3468–3517CrossRefGoogle Scholar
  21. 21.
    Gerard JF (ed) (2001) Fillers and filled polymers. Wiley-VCH, WeinheimGoogle Scholar
  22. 22.
    Vijayan A, Sambhudevan S, Shankar B (2015) Mechanical, swelling and magnetic property studies of Natural rubber-nickel ferrite composites. Int J Appl Eng Res ISSN 0973–4562(10):91Google Scholar
  23. 23.
    Malini KA, Mohammed EM, Sindhu S, Joy PA, Date SK, Kulkarni SD, Kurian P, Anantharaman MR (2001) Magnetic and processability studies on rubber ferrite composites based on natural rubber and mixed ferrite. J Mater Sci 36:5551CrossRefGoogle Scholar
  24. 24.
    Kooti M, Naghdi Sedeh A (2013) Synthesis and characterization of NiFe2O4 magnetic nanoparticles by combustion method. J Mater Sci Technol 29(1):34–38CrossRefGoogle Scholar
  25. 25.
    Muscas G, Concas G, Cannas C, Musinu A, Ardu A, Orrù F, Fiorani D, Laureti S, Rinaldi D, Piccaluga G, Peddis D (2013) Magnetic properties of small magnetite nanocrystals. J Phys Chem C 117(44):23378–23384CrossRefGoogle Scholar
  26. 26.
    Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Randall Lee T (2013) Tuning the magnetic properties of nanoparticles. Int J Mol Sci 14(8):15977–16009CrossRefGoogle Scholar
  27. 27.
    Anantharaman MR, Malini KA, Sindhu S, Mohammed EM, Date SK, Kulkami SD, Joy PA, Kurian Philip (2001) Tailoring magnetic and dielectric properties of rubber ferrite composites containing mixed ferrites. Bull Mater Sci 24:623CrossRefGoogle Scholar
  28. 28.
    Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics-I, alternating current characteristics. J Chem Phys 9:341CrossRefGoogle Scholar
  29. 29.
    Tanaka T, Kozaka M, Fuse N, Ohki Y (2005) Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends. IEEE Trans Dielectr Electr Insul 12:669–681CrossRefGoogle Scholar
  30. 30.
    Smith RC, Liang C, Landry M, Nelson J, Schadler K (2008) The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans Dielect Electric Insul 15:187–196CrossRefGoogle Scholar
  31. 31.
    Ma D, Hugener TA, Siegel RW, Christerson A, Martensson E, Onneby C, Schadler L (2005) Influence of nanoparticle surface modification on the electrical behavior of polyethylene nanocomposites. Nanotechnology 16:724CrossRefGoogle Scholar
  32. 32.
    Bhattacharya M (2016) Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9:262CrossRefGoogle Scholar
  33. 33.
    Hamon BV (1953) Maxwell? Wagner loss and absorption currents in dielectrics. Aust J Phys 6:304CrossRefGoogle Scholar
  34. 34.
    Wang S, Zhang Y, Peng Z, Zhang Y (2005) New method for preparing polybutadiene rubber/clay. J Appl Polym Sci 98:227CrossRefGoogle Scholar
  35. 35.
    Fritzsche J, Das A, Jurk R, Stöckelhuber KW, Heinrich G, Klüppel M (2008) Relaxation dynamics of carboxylated nitrile rubber filled with organomodified nanoclay eXPRESS. Polym Lett 2(5):373–381CrossRefGoogle Scholar
  36. 36.
    Das A, Jurk R, Stöckelhuber KW, Engelhardt T, Fritzsche J, Klüppel M, Heinrich G (2008) Synthesis, physico-chemical characterization and bio-activity of cobalt(II) tetrathiocyanato diargentate(I) complexes with some acylhydrazones. J Macromol Sci Part A Pure Appl Chem 45:144CrossRefGoogle Scholar
  37. 37.
    Rao Y, Jianmin Q, Marinis T, Wong CP (2000) A precise numerical prediction of effective dielectric constant for polymer-ceramic composite based on effective-medium theory. IEEE Trans Compon Packag Technol 23(4):680–683CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryAmrita Vishwa VidyapeethamAmritapuriIndia
  2. 2.Department of Mechanical EngineeringAmrita Vishwa VidyapeethamAmritapuriIndia
  3. 3.School of Pure and Applied PhysicsMahatma Gandhi UniversityKottayamIndia

Personalised recommendations