Advertisement

Polymer Bulletin

, Volume 75, Issue 11, pp 5179–5195 | Cite as

Kinetics, mechanisms and polymer property studies of ring-opening polymerization of ɛ-caprolactone and lactides initiated by (benzimidazolylmethyl)amino Zn(II) alkoxides

  • Ekemini D. Akpan
  • Bernard Omondi
  • Stephen O. Ojwach
Original Paper
  • 76 Downloads

Abstract

The reactions of substituted (benzimidazolylmethyl)amines ligands (L1–L3) with ZnEt2 in the presence of either BnOH or t-BuOH afforded the corresponding Zn(II) metal alkoxides [Zn(L1)(OBn)]2 (1), [(Zn(L2)(OBn)]2 (2), [Zn(L3)(OBn)]2 (3), [Zn(L2)(t-BuO)]2 (4), respectively. Complexes 14 formed effective initiators in the ring-opening polymerization (ROP) reactions of ɛ-caprolactone (ɛ-CL), D,L-lactide (D,L-LA) and L-lactide (L-LA). The ROP reactions followed pseudo-first-order kinetics with respect to monomer. Moderate molecular weight polymers of 10,650 g mol−1 exhibiting relatively narrow molecular weight distributions (1.16–1.54) were obtained. Predominantly crystalline isotactic poly(L-LA) and heterotactic poly(D,L-LA) were produced, respectively. Thermal analyses of PLA also supported the formation of isotactic poly(L-LA) with decomposition temperature of 298 °C.

Keywords

Zinc alkoxides Polymerization Cyclic esters 

Notes

Acknowledgements

The authors would like to thank University of KwaZulu-Natal and National Research Foundation (NRF-South Africa) for financial support.

Supplementary material

289_2018_2321_MOESM1_ESM.docx (664 kb)
Supporting Information contains typical synthetic methods for the ligands and spectroscopic data, selected NMR and mass spectra of some complexes, kinetic plots and mass spectrum of polymers obtained. 1 (DOCX 664 kb)

References

  1. 1.
    Albertsson A-C, Varma IK (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromol 4:1466–1486CrossRefGoogle Scholar
  2. 2.
    Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47:89–144CrossRefGoogle Scholar
  3. 3.
    Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32:501–529CrossRefGoogle Scholar
  4. 4.
    Yuan Y, Jing X, Xiao H, Chen X, Huang Y (2011) Zinc-based catalyst for the ring-opening polymerization of cyclic esters. J Appl Polym Sci 121:2378–2385CrossRefGoogle Scholar
  5. 5.
    Tsai C-Y, Du H-C, Chang J-C, Huang B-H, Ko B-T, Lin C-C (2014) Ring-opening polymerization of cyclic esters initiated by zirconium, titanium and yttrium complexes. RSC Adv 4:14527–14537CrossRefGoogle Scholar
  6. 6.
    Huang Y, Hung W-C, Liao M-Y, Tsai T-E, Peng Y-L, Lin C-C (2009) Ring-opening polymerization of lactides initiated by magnesium and zinc complexes based on NNO-tridentate ketiminate ligands: activity and stereoselectivity studies. J Polym Sci Part A Polym Chem 47:2318–2329CrossRefGoogle Scholar
  7. 7.
    Inoue S (2000) Immortal polymerization: the outset, development, and application. J Polym Sci Part A Polym Chem 38:2861–2871CrossRefGoogle Scholar
  8. 8.
    Song S, Zhang X, Ma H, Yang Y (2012) Zinc complexes supported by claw-type aminophenolate ligands: synthesis, characterization and catalysis in the ring-opening polymerization of rac-lactide. Dalton Trans 41:3266–3277CrossRefGoogle Scholar
  9. 9.
    Gowda RR, Chakraborty D (2010) Zinc acetate as a catalyst for the bulk ring opening polymerization of cyclic esters and lactide. J Mol Catal A Chem 333:167–172CrossRefGoogle Scholar
  10. 10.
    Liu Z, Gao W, Zhang J, Cui D, Wu Q, Mu Y (2010) Bis(imino)aryl NCN pincer aluminum and zinc complexes: synthesis, characterization, and catalysis on l-Lactide polymerization. Organometallics 29:5783–5790CrossRefGoogle Scholar
  11. 11.
    Ikpo N, Saunders LN, Walsh JL, Smith JMB, Dawe LN, Kerton FM (2011) Zinc complexes of piperazinyl-derived aminephenolate ligands: synthesis, characterization and ring-opening polymerization activity. Eur J Inorg Chem 2011:5347–5359CrossRefGoogle Scholar
  12. 12.
    Wu J, Yu T-L, Chen C-T, Lin C-C (2006) Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coord Chem Rev 250:602–626CrossRefGoogle Scholar
  13. 13.
    Sutar AK, Maharana T, Dutta S, Chen C-T, Lin C-C (2010) Ring-opening polymerization by lithium catalysts: an overview. Chem Soc Rev 39:1724–1746CrossRefGoogle Scholar
  14. 14.
    Fliedel C, Rosa V, Alves FM, Martins AM, Aviles T, Dagorne S (2015) P, O-Phosphinophenolate zinc(ii) species: synthesis, structure and use in the ring-opening polymerization (ROP) of lactide, caprolactone and trimethylene carbonate. Dalton Trans 44:12376–12387CrossRefGoogle Scholar
  15. 15.
    Fliedel C, Mameri S, Dagorne S, Avilés T (2014) Controlled ring-opening polymerization of trimethylene carbonate and access to PTMC-PLA block copolymers mediated by well-defined N-heterocyclic carbene zinc alkoxides. Appl Organomet Chem 28:504–511CrossRefGoogle Scholar
  16. 16.
    Fliedel C, Vila-Viçosa D, Calhorda MJ, Dagorne S, Avilés T (2014) Dinuclear zinc–N-heterocyclic carbene complexes for either the controlled ring-opening polymerization of lactide or the controlled degradation of polylactide under mild conditions. ChemCatChem 6:1357–1367CrossRefGoogle Scholar
  17. 17.
    Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide. J Polym Sci Part B Polym Lett 7:287–292CrossRefGoogle Scholar
  18. 18.
    Romain C, Rosa V, Fliedel C, Bier F, Hild F, Welter R, Dagorne S, Aviles T (2012) Highly active zinc alkyl cations for the controlled and immortal ring-opening polymerization of ε-caprolactone. Dalton Trans 41:3377–3379CrossRefGoogle Scholar
  19. 19.
    Platel RH, Hodgson LM, Williams CK (2008) Biocompatible initiators for lactide polymerization. Polym Rev 48:11–63CrossRefGoogle Scholar
  20. 20.
    Stanford MJ, Dove AP (2010) Stereocontrolled ring-opening polymerisation of lactide. Chem Soc Rev 39:486–494CrossRefGoogle Scholar
  21. 21.
    Thomas CM (2010) Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem Soc Rev 39:165–173CrossRefGoogle Scholar
  22. 22.
    Pal S, Hwang W-S, Lin I, Lee C-S (2007) J Mol Catal A 269:197CrossRefGoogle Scholar
  23. 23.
    Attandoh NW, Ojwach SO, Munro OQ (2014) (Benzimidazolylmethyl)amine Zn-II and Cu-II carboxylate complexes: structural, mechanistic and kinetic studies of polymerisation reactions of epsilon-caprolactone. Eur J Inorg Chem 3053–3064Google Scholar
  24. 24.
    Hao P, Zhang S, Sun W-H, Shi Q, Adewuyi S, Lu X, Li P (2007) Synthesis, characterization and ethylene oligomerization studies of nickel complexes bearing 2-benzimidazolylpyridine derivatives. Organometallics 26:2439–2446CrossRefGoogle Scholar
  25. 25.
    Achar KCS, Hosamani KM, Seetharamareddy HR (2010) In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives. Eur J Med Chem 45:2048–2054CrossRefGoogle Scholar
  26. 26.
    Campos-Vallette MM, Figueroa KA, Latorre R, Manriquez V, Diaz G, Costamagna J, Otero M (1992) Vib Spectrosc 4Google Scholar
  27. 27.
    Save M, Schappacher M, Soum A (2002) Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide, 1. General aspects and kinetics. Macromol Chem Phys 203:889–899CrossRefGoogle Scholar
  28. 28.
    Wu J-C, Huang B-H, Hsueh M-L, Lai S-L, Lin C-C (2005) Ring-opening polymerization of lactide initiated by magnesium and zinc alkoxides. Polymer 46:9784–9792CrossRefGoogle Scholar
  29. 29.
    Wang C-H, Li C-Y, Huang B-H, Lin C-C, Ko B-T (2013) Synthesis and structural determination of zinc complexes based on an anilido-aldimine ligand containing an O-donor pendant arm: zinc alkoxide derivative as an efficient initiator for ring-opening polymerization of cyclic esters. Dalton Trans 42:10875–10884CrossRefGoogle Scholar
  30. 30.
    O’Keefe BJ, Breyfogle LE, Hillmyer MA, Tolman WB (2002) Mechanistic comparison of cyclic ester polymerizations by novel Iron(III)—alkoxide complexes: single vs multiple site catalysis. J Am Chem Soc 124:4384–4393CrossRefGoogle Scholar
  31. 31.
    Hodgson LM, Platel RH, White AJP, Williams CK (2008) A series of bis(thiophosphinic amido)yttrium initiators for lactide ring-opening polymerization. Macromolecules 41:8603–8607CrossRefGoogle Scholar
  32. 32.
    Bhunora S, Mugo J, Bhaw-Luximon A, Mapolie S, Van Wyk J, Darkwa J, Nordlander E (2011) The use of Cu and Zn salicylaldimine complexes as catalyst precursors in ring opening polymerization of lactides: ligand effects on polymer characteristics. Appl Organomet Chem 25:133–145CrossRefGoogle Scholar
  33. 33.
    Duda A, Kowalski A (2009) Thermodynamics and kinetics of ring-opening polymerization. Handbook of ring-opening polymerization. Wiley, Amsterdam, pp 1–51Google Scholar
  34. 34.
    Akpan ED, Ojwach SO, Omondi B, Nyamori VO (2016) Structural and kinetic studies of the ring-opening polymerization of cyclic esters using N,N′diarylformamidines Zn(II) complexes. Polyhedron 110:63–72CrossRefGoogle Scholar
  35. 35.
    Buffet J-C, Davin JP, Spaniol TP, Okuda J (2011) Alkaline earth metal amide complexes containing a cyclen-derived (NNNN) macrocyclic ligand: synthesis, structure, and ring-opening polymerization activity towards lactide monomers. New J Chem 35:2253–2257CrossRefGoogle Scholar
  36. 36.
    Chisholm MH, Gallucci JC, Krempner C (2007) Ring-opening polymerization of l-lactide by organotin(IV)alkoxides, R2Sn(OPri)2: estimation of the activation parameters. Polyhedron 26:4436–4444CrossRefGoogle Scholar
  37. 37.
    Hild F, Haquette P, Brelot L, Dagorne S (2010) Synthesis and structural characterization of well-defined anionic aluminium alkoxide complexes supported by NON-type diamido ether tridentate ligands and their use for the controlled ROP of lactide. Dalton Trans 39:533–540CrossRefGoogle Scholar
  38. 38.
    Sung C-Y, Li C-Y, Su J-K, Chen T-Y, Lin C-H, Ko B-T (2012) Zinc and magnesium complexes incorporated by bis(amine) benzotriazole phenoxide ligand: synthesis, characterization, photoluminescent properties and catalysis for ring-opening polymerization of lactide. Dalton Trans 41:953–961CrossRefGoogle Scholar
  39. 39.
    Wang L, Ma H (2010) Dalton Trans 39:7897CrossRefGoogle Scholar
  40. 40.
    Chen H-Y, Huang B-H, Lin C-C (2005) A Highly efficient initiator for the ring-opening polymerization of lactides and ε-caprolactone: a kinetic study. Macromolecules 38:5400–5405CrossRefGoogle Scholar
  41. 41.
    Attandoh NW, Ojwach SO, Munro OQ (2014) (Benzimidazolylmethyl)amine ZnII and CuII carboxylate complexes: structural, mechanistic and kinetic studies of polymerisation reactions of ε-caprolactone. Eur J Inorg Chem pp 3053–3064Google Scholar
  42. 42.
    Appavoo D, Omondi B, Guzei IA, van Wyk JL, Zinyemba O, Darkwa J (2014) Bis(3,5-dimethylpyrazole) copper(II) and zinc(II) complexes as efficient initiators for the ring opening polymerization of epsilon-caprolactone and D,L-lactide. Polyhedron 69:55–60CrossRefGoogle Scholar
  43. 43.
    Ouhadi T, Hamitou A, Jerome R, Teyssie P (1976) Soluble bimetallic μ-Oxo-alkoxides. 8. Structure and kinetic behavior of the catalytic species in unsubstituted lactone ring-opening polymerization. Macromolecules 9:927–931CrossRefGoogle Scholar
  44. 44.
    Duda A (1996) Polymerization of ε-caprolactone initiated by aluminum isopropoxide carried out in the presence of alcohols and diols. Kinetics and mechanism. Macromolecules 29:1399–1406CrossRefGoogle Scholar
  45. 45.
    Kong W-L, Chai Z-Y, Wang Z-X (2014) Synthesis of N,N,O-chelate zinc and aluminum complexes and their catalysis in the ring-opening polymerization of epsilon-caprolactone and rac-lactide. Dalton Trans 43:14470–14480CrossRefGoogle Scholar
  46. 46.
    Kong W-L, Wang Z-X (2014) Dinuclear magnesium, zinc and aluminum complexes supported by bis(iminopyrrolide) ligands: synthesis, structures, and catalysis toward the ring-opening polymerization of [varepsilon]-caprolactone and rac-lactide. Dalton Trans 43:9126–9135CrossRefGoogle Scholar
  47. 47.
    Collins S (2011) Polymerization catalysis with transition metal amidinate and related complexes. Coord Chem Rev 255:118–138CrossRefGoogle Scholar
  48. 48.
    Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL (2007) Organocatalytic ring-opening polymerization. Chem Rev 107:5813–5840CrossRefGoogle Scholar
  49. 49.
    Wang J, Yao Y, Zhang Y, Shen Q (2009) Bridged bis(amidinate) ytterbium alkoxide and phenoxide: syntheses, structures, and their high activity for controlled polymerization of l-lactide and ε-caprolactone. Inorg Chem 48:744–751CrossRefGoogle Scholar
  50. 50.
    Dubois P, Dubois P, Coulembier O, Raquez JM (2009) Handbook of ring-opening polymerization. Wiley, AmsterdamCrossRefGoogle Scholar
  51. 51.
    Dubois P, Jacobs C, Jerome R, Teyssie P (1991) Macromolecular engineering of polylactones and polylactides. 4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide. Macromolecules 24:2266–2270CrossRefGoogle Scholar
  52. 52.
    Chamberlain BM, Cheng M, Moore DR, Ovitt TM, Lobkovsky EB, Coates GW (2001) Polymerization of lactide with zinc and magnesium β-diiminate complexes: stereocontrol and mechanism. J Am Chem Soc 123:3229–3238CrossRefGoogle Scholar
  53. 53.
    Thakur KAM, Kean RT, Hall ES, Kolstad JJ, Lindgren TA, Doscotch MA, Siepmann JI, Munson EJ (1997) High-resolution 13C and 1H solution NMR study of poly(lactide). Macromolecules 30:2422–2428CrossRefGoogle Scholar
  54. 54.
    Kim Y, Jnaneshwara GK, Verkade JG (2003) Titanium Alkoxides as initiators for the controlled polymerization of lactide. Inorg Chem 42:1437–1447CrossRefGoogle Scholar
  55. 55.
    Dove AP, Gibson VC, Marshall EL, White AJP, Williams DJ (2001) A well defined tin(ii) initiator for the living polymerisation of lactide. Chem Commun pp 283–284Google Scholar
  56. 56.
    Cheng M, Attygalle AB, Lobkovsky EB, Coates GW (1999) Single-site catalysts for ring-opening polymerization: synthesis of heterotactic poly(lactic acid) from rac-lactide. J Am Chem Soc 121:11583–11584CrossRefGoogle Scholar
  57. 57.
    Zhang Y, Gao A, Zhang Y, Xu Z, Yao W (2016) Aluminum complexes with benzoxazolphenolate ligands: synthesis, characterization and catalytic properties for ring-opening polymerization of cyclic esters. Polyhedron 112:27–33CrossRefGoogle Scholar
  58. 58.
    Kremer AB, Osten KM, Yu I, Ebrahimi T, Aluthge DC, Mehrkhodavandi P (2016) Dinucleating ligand platforms supporting indium and zinc catalysts for cyclic ester polymerization. Inorg Chem 55:5365–5374CrossRefGoogle Scholar
  59. 59.
    Petrus R, Sobota P (2012) Zinc complexes supported by maltolato ligands: synthesis, structure, solution behavior, and application in ring-opening polymerization of lactides. Organometallics 31:4755–4762CrossRefGoogle Scholar
  60. 60.
    Jamshidi K, Hyon S-H, Ikada Y (1988) Thermal characterization of polylactides. Polymer 29:2229–2234CrossRefGoogle Scholar
  61. 61.
    Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ekemini D. Akpan
    • 1
  • Bernard Omondi
    • 1
  • Stephen O. Ojwach
    • 2
  1. 1.School of Chemistry and Physics, Westville CampusUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.School of Chemistry and Physics, Pietermaritzburg CampusUniversity of KwaZulu-NatalScottsvilleSouth Africa

Personalised recommendations